Компьютерное предсказание биологической активности веществ: пределы возможного
С давних лет человечество мечтает о лекарстве,
которое при действии на организм обладало бы
максимальной избирательностью, благодаря чему
эффективно устраняется причина болезни, но не
возникают нежелательные побочные эффекты.
Наиболее ярко эта идея выражена в концепции
"магической пули", выдвинутой основателем
химиотерапии П.Эрлихом (1854-1915).
В то же время, весь накопленный к настоящему
моменту опыт медицинской химии и фармакологии
свидетельствует об отсутствии абсолютной
специфичности действия известных лекарственных
веществ: все они способны вызывать многообразные
фармакологические эффекты, часть которых
используется для терапии определенной
патологии, а другие - являются причиной побочного
действия и токсичности. Полный набор
фармакологических эффектов которые может
проявить некое вещество в различных условиях
эксперимента, называется спектром
биологической активности данного вещества.
В процессе исследования нового
фармакологического вещества характеристики
спектра его биологической активности выявляются
не сразу: некоторые эффекты обнаруживаются уже
при первом тестировании "в пробирке", другие
- при изучении его действия на экспериментальных
животных, третьи - при проведении клинических
испытаний и последующем использовании препарата
в медицинской практике. Нередко новое действие
выявляется у вещества, применяемого в медицине в
течение многих лет. Такое открытие может стать
основой для использования препарата по новому
назначению. Например, вальпроат был
первоначально предложен в качестве анксиолитика
в 1961 г. и как противоэпилептическое средство - в
1989 г.;
левамизол - как антигельминтное средство
в 1968 г. и как иммуностимулятор - в 1980 г.; альпростадил
- как антиагрегантное средство в 1988 г. и как
препарат, стимулирующий эрекцию - в 1994 г.;
аспирин был предложен в качестве
анальгетика в 1899 г., а его антиагрегантное
действие было открыто лишь в 1971 г.; и т.д. (см.: Prous
J. Drugs Years News'1995).
Препарат талидомид, обладающий
анксиолитическим и снотворным эффектами, был
введен в медицинскую практику в 50-х годах (Brit. J.
Pharmacol., 1960, 15, p.111-116). В начале 60-х годов из-за
наличия тератогенности он стал причиной
врожденных дефектов у более чем 8000 новорожденных
в Европе (Am. J. Public Health, 1965, 55, p.703-707), что привело
к запрету на его применение и ужесточению
требований к исследованию безопасности
лекарственных препаратов вообще. Теперь, сорок
лет спустя, талидомид переживает
"второе рождение". Он активно испытывается в
клинике как потенциальное противоопухолевое и
антиметастатическое средство, как препарат для
симптоматической терапии СПИДа. Это обусловлено
его недавно открытыми антиангиогенным эффектом (Proc.
Natl. Acad. Sci. U S A. 1994, Apr 26; 91 (9):4082-5) и
антагонистическим действием по отношению к
фактору некроза опухоли (Clin. Immunol. Immunopathol. 1996, 81,
p.219-223). В сентябре 1997 года Администрация по
лекарствам и пищевым продуктам США (ФДА) даже
устроила специальное открытое совещание,
посвященное современным оценкам соотношения
"польза-риск" при использовании талидомида
в медицинской практике (http://www.fda.gov).
Если бы можно было предсказать вероятность
проявления веществом конкретных видов
биологической активности заранее, то его
дорогостоящее исследование в эксперименте и
клинике проводилось бы более прицельно, и
позволило бы выявить многие полезные и побочные
эффекты на ранних стадиях изучения препарата.
Основа для такого предсказания известна
достаточно давно, и она связана с утверждением:
"Биологическая активность вещества является
функцией его химической структуры ". Надо
"всего лишь" выявить вид этой функции и в
дальнейшем "подставить в уравнение"
структурную формулу исследуемого вещества,
получив в результате прогностическую оценку его
биологической активности. В сущности, именно так
и поступают в медицинской химии: анализируя
химическое строение соединений с известной
биологической активностью, выделяют элементы,
"ответственные" за проявление/отсутствие
того или иного эффектов, и далее
"конструируют" молекулы более активных и
менее токсичных аналогов.
Однако, знание известных биологически активных
соединений и аналитические возможности даже
самого лучшего из медицинских химиков -
ограничены, и поэтому помощь специальной
компьютерной системы в получении такого рода
оценок была бы полезной. Идея создания
компьютерной системы прогноза биологической
активности, на первый взгляд, выглядит
достаточно просто: нужно собрать всю известную
информацию о биологически активных соединениях,
создать на этой основе обучающую выборку,
провести анализ связей
"структура-активность" для веществ из
обучающей выборки и построить соответствующие
зависимости. "Подставив" в эти зависимости
данные о структуре нового вещества, можно
получить в результате оценку его биологической
активности.
Правда, традиционные подходы к анализу
количественных соотношений
"структура-активность" (КССА) применимы к
соединениям одного и того же химического класса
и, как правило, оперируют с одним-единственным
видом биологической активности. Можно ли
разработать подобные методы для веществ,
гетерогенных как по химической структуре, так и
по проявляемому ими биологическому действию?
Предложение предсказывать подобным образом
спектр биологической активности вещества было
впервые высказано в начале 70-х годов к.х.н.
В.В.Авидоном c сотрудниками, работавшими тогда в
НИИ по биологическим испытаниям химических
соединений (Хим.-фарм.журн., 1974, N8, с.22-25).
В.В.Авидоном совместно с к.х.н. В.Г.Блиновой, к.м.н.
Е.М.Михайловским, Р.К.Казарян, к.ф.-м.н.
В.С.Ароловичем и др., были разработаны
оригинальные языки описания химической
структуры, Тезаурус (структурированный словник)
по биологической активности химических
соединений, математические методы установления
зависимостей "структура-активность" и
прогноза свойств новых веществ; создан банк
данных по биологически активным соединениям
(обучающая выборка). На этой основе были
осуществлены первые эксперименты по
прогнозированию спектра биологической
активности по структурной формуле вещества (Хим.-фарм.журн.,
1983, N1, с.59-62; N3, с.321-324).
Эта задача была реализована в рамках
Государственной системы регистрации новых
химических соединений, организованной
членом-корреспондентом АН СССР Л.А.Пирузяном (Вестн.
АН СССР, 1977, N 2, с.50-60), целью которой стал отбор
наиболее перспективных фармакологических
веществ среди всех химических соединений,
получаемых в СССР. Такой подход изначально
предопределил широту охвата видов биологической
активности, по которым должен был осуществляться
компьютерный прогноз.
Крупнейшие химико-фармацевтические фирмы
обычно специализируются на 3-5 основных
фармакотерапевтических направлениях, что в
принципе не позволяет им решать подобную
глобальную задачу. Именно поэтому всеобъемлющая
компьютерная система прогноза биологической
активности до настоящего времени не имеет
зарубежных аналогов.
За истекшее двадцатилетие методы,
первоначально предложенные для прогноза спектра
биологической активности, претерпели
существенные изменения (Хим.-фарм.журн., 1974, N8,
с.22-25; Бюлл. ВНЦ БАВ, 1990, (1): 4-25; Эксп. клинич.
фармакол., 1996, 58 (2): 56-62; Bioactive Compound Design: Possibilities for
Industrial Use, BIOS Sci. Publ., Oxford, 1996, p.47-56;
http://www.ibmh.msk.su/PASS/default.htm). Эти изменения
базируются как на теоретическом анализе
методики прогнозирования, так и на имеющемся
опыте ее применения для поиска веществ с
требуемыми свойствами.
Современная версия компьютерной системы
предсказания спектра биологической активности PASS
C&T (Prediction of Activity Spectra for Substances:
Complex & Training) реализована в 1998 году (http://www.ibmh.msk.su/PASS/default.htm).
Она включает в себя обучающую выборку,
содержащую более 30000 биологически активных
веществ с известной биологической активностью, и
охватывает более 400 фармакологических эффектов,
механизмов действия, а также мутагенность,
канцерогенность, тератогенность и
эмбриотоксичность.
Ныне химическая структура описывается в виде
предложенных сотрудником Лаборатории
структурно-функционального конструирования
лекарств НИИ Биомедхимии РАМН к.ф.-м.н.
Д.А.Филимоновым многоуровневых атомных
окрестностей (МNА), которые генерируются
автоматически на основе MOL или SDF файлов (MDL Information
Systems, Inc.), являющихся в настоящее время de facto
стандартом для компьютерного представления
структурных формул химических веществ. MOL и SDF
файлы экспортируются программами ISIS/Draw и ISIS/Base
(MDL Information Systems, Inc.), которые представляют собой
химический редактор и систему управления
химическими базами данных, широко используемые в
настоящее время академическими учреждениями и
химико-фармацевтическими фирмами (http://www.mdli.com).
Пример представления структурной информации в
виде кодов MNA для молекулы никотиновой кислоты -
водорастворимого компонента комплекса витамина
В - приведен на рис.1.
Математический подход, используемый в PASS
C&T, выбран Д.А.Филимоновым в результате
сравнительного анализа 300 различных методов (Тез.
докл. II Рос. нац. конгресса "Человек и
лекарство", М., 1995, с.62-63). Показано, что средняя
точность прогноза с помощью PASS C&T при
скользящем контроле с поочередным исключением
по одному соединению из обучающей выборки
составляет около 84%. Путем случайного разбиения
обучающей выборки на две примерно равные
подвыборки и перекрестного прогноза спектра
активности для веществ одной из них (тестовой) с
использованием другой в качестве обучающей
продемонстрирована высокая статистическая
устойчивость используемого алгоритма (Abstr. 11th Eur.
Symp. Quant. Str.-Act. Relation.: Computer-Assisted Lead Finding and Optimisation,
Lausanne, Switzerland, P-59A).
HC |
C(C(CC-H)C(CN-H)-C(C-O-O)) |
HO |
C(C(CC-H)N(CC)-H(C)) |
CHCC |
C(C(CC-C)N(CC)-H(C)) |
CHCN |
N(C(CN-H)C(CN-H)) |
CCCC |
-H(C(CC-H)) |
CCOO |
-H(C(CN-H)) |
NCC |
-H(-O(-H-C)) |
OHC |
-C(C(CC-C)-O(-H-C)-O(-C)) |
OC |
-O(-H(-O)-C(C-O-O)) |
C(C(CC-H)C(CC-C)-H(C)) |
-O(-C(C-O-O)) |
C(C(CC-H)C(CN-H)-H(C)) |
|
Рис.1. MNA дескрипторы молекулы никотиновой
кислоты.
PASS C&T является открытой системой.
Пользователь может добавлять дополнительные
вещества в имеющуюся обучающую выборку или
создавать ее заново и проводить процедуру
переобучения системы.
Результаты прогноза выдаются либо в виде
текстового файла, который может в дальнейшем
обрабатываться с помощью различных текстовых
процессоров (например, MS Word), либо в виде SDF файла,
который может импортироваться в ISIS/Base и
добавляться к имеющейся в базе данных информации
о веществах. Далее обработка результатов
прогноза осуществляется стандартными
программными средствами, имеющимися в ISIS/Base.
Биологическая активность описывается в PASS
C&T качественным образом
("да"/"нет"). Выдаваемые результаты
прогноза помимо названий активности включают в
себя оценки вероятностей наличия (Pa) и
отсутствия каждой активности (Pi), имеющие
значения от 0 до 1. Поскольку эти вероятности
рассчитываются независимо, их сумма не равна
единице.
Пример предсказания спектра биологической
активности для препарата талидомид
приведен на рис.2. Как видно из рисунка, известные
для данного вещества виды активности
(анксиолитическая, седативная, снотворная,
тератогенная, модулятор цитокинов, ингибитор
ангиогенеза, антагонист фактора некроза опухоли)
содержатся в прогнозируемом спектре активности.
Помимо этого, прогнозируется также ряд
дополнительных видов активности -
сердечно-сосудистый аналептик, антагонист
нейрокинина, ингибитор кальпаина, и др. - которые
указывают перспективные направления
дальнейшего тестирования данного препарата.
Необходимо подчеркнуть, что для эффективного
использования данные компьютерного прогноза
должны рассматриваться специалистами с учетом
имеющейся дополнительной информации.
Так, если целью исследования является поиск
базовых структур лекарств (lead compounds), обладающих
существенной новизной (New Chemical Entity, NCE),
целесообразно отбирать из массива доступных
веществ не те структуры, для которых величина Pa
близка к единице (они могут оказаться близкими
аналогами известных препаратов), а соединения с Pa<0.7.
Риск получения отрицательного результата в
эксперименте тем больше, чем меньше величина Pa,
однако и новизна такой структуры (при
подтверждении прогноза в эксперименте) будет
более высокой.
Наоборот, если поставлена цель поиска близкого
аналога известного препарата (так называемые
"me-too-drugs"), то из массива имеющихся образцов
следует отобрать вещества с наибольшими
значениями Pa.
Кроме того, если, наряду с основным действием,
известен перечень нежелательных побочных
эффектов, то при отборе перспективных для
исследований соединений можно
руководствоваться комбинированным критерием:
- наличие в прогнозируемом спектре требуемых
эффектов/механизмов;
- отсутствие нежелательных эффектов/механизмов.
Например, если ставится задача поиска
противоастматического препарата
комбинированного действия, обладающего
одновременно бронхорасширяющим и
противовоспалительным/противоаллергическим
эффектами, однако не имеющим нежелательных
нарушений сердечной деятельности, то в
прогнозируемом спектре активности вещества
должны присутствовать, например, следующие виды
активности: (1) агонист b 2 адренорецепторов;
(2) антагонист лейкотриенов/антагонист
тромбоксана/ ингибитор фактора активации
тромбоцитов и т.п.; и наоборот, отсутствовать,
например, действие на a адренорецепторы.
Естественно, что при рассмотрении всего списка,
включающего свыше 400 прогнозируемых PASS C&T
видов активности, можно составить большое
количество комбинаций из требуемых и
нежелательных эффектов. Для их анализа сотрудник
Лаборатории структурно-функционального
конструирования лекарств НИИ Биомедхимии РАМН
А.А.Лагунин разработал специальную компьютерную
систему интерпретации спектров биологической
активности веществ IBIAC, основанную на
знаниях об известных взаимосвязях между
фармакологическими эффектами и механизмом
действия биологически активных веществ (более 2000
терминов, описывающих биологическую активность).
С использованием системы IBIAC генерация
перечня эффектов, соответствующих определенному
механизму действия и, наоборот, списка вероятных
механизмов, ответственных за проявление
определенного эффекта, осуществляется
автоматически.
Поскольку прогноз спектра биологической
активности осуществляется на основе структурной
формулы химического соединения, он может быть
выполнен уже на этапе планирования синтеза. В
итоге будут синтезированы лишь некоторые из
теоретически возможных производных, в
наибольшей степени удовлетворяющие критериям
задачи.
Необходимо отметить, что прогноз спектра
биологической активности возможен для
низкомолекулярных органических (drug-like)
соединений, структура которых не отличается
принципиально от веществ обучающей выборки. Не
имеет смысла прогноз для синтетических и
биополимеров, для неорганических веществ и т.п.
Другое ограничение определяется
необходимостью наличия не менее 5 веществ с
известной активностью для формирования
обучающей выборки. Очевидно, что в случае
принципиально новых мишеней действия
лекарственных препаратов, для которых имеются
данные только об 1-2 лигандах, предсказание
биологической активности таким методом не может
быть реализовано.
PASS CT 1.11 - Prediction of Activity Spectra for Substances
Copyright (c) 1998 V.V.Poroikov, D.A.Filimonov & Associates
Chemical Structure File: thalido.mol, <ACTIVITY_PREDICTION>
24 Substructure descriptors; 0 new, 84 Possible activities.
Pa |
Pi |
Activity |
0.781 |
0.006 |
Cytokine modulator |
0.713 |
0.019 |
Sedative |
0.678 |
0.030 |
Cardiovascular analeptic |
0.656 |
0.015 |
Angiogenesis inhibitor |
0.439 |
0.007 |
Neurokinin antagonist |
0.435 |
0.008 |
Calpain inhibitor |
0.433 |
0.009 |
Oxytocin antagonist |
0.443 |
0.024 |
Chemoprotective |
0.421 |
0.011 |
Tumour necrosis factor antagonist |
0.398 |
0.007 |
Hypnotic |
0.439 |
0.050 |
NMDA agonist |
0.407 |
0.028 |
Bronchodilator |
0.430 |
0.059 |
Psychotropic |
0.417 |
0.054 |
Anxiolytic |
0.370 |
0.007 |
Protein kinase C inhibitor |
0.428 |
0.068 |
Anticonvulsant |
0.421 |
0.062 |
Teratogen |
0.361 |
0.008 |
Antidiabetic symptomatic |
0.377 |
0.035 |
Cardioprotectant |
0.336 |
0.012 |
Benzodiazepine agonist partial |
0.362 |
0.052 |
Spasmolytic, urinary |
0.364 |
0.060 |
Analeptic |
0.360 |
0.060 |
Nootropic |
0.305 |
0.008 |
Uterine Relaxant |
0.375 |
0.086 |
Septic shock treatment |
0.385 |
0.102 |
Platelet adhesion inhibitor |
… |
… |
… |
Рис.2. Химическая структура и часть
прогнозируемого спектра биологической
активности для препарата талидомид
(жирным шрифтом выделены активности, известные
из эксперимента).
В случае существенной по отношению к
соединениям обучающей выборки новизны
химической структуры прогнозируемого вещества
(более 3-х дескрипторов ни разу не встретились в
обучающей выборке) результаты прогноза могут
иметь значительную погрешность. В этом случае
целесообразно протестировать вещество на
требуемые виды активности независимо от
результатов прогноза, так как результатом может
оказаться принципиально новая базовая структура
(NCE).
В некоторых случаях вещество прогнозируется
одновременно как агонист и антагонист
(стимулятор и блокатор, активатор и ингибитор) по
отношению к одним и тем же рецепторам (ферментам
и т.п.). Это означает, что система не может
дифференцировать внутреннюю активность
вещества, а лишь указывает на его тропность
(способность к связыванию) с данным рецептором
(ферментом).
И, наконец, необходимо иметь в виду, что система PASS
C&T не может предсказать, станет ли
конкретное вещество лекарственным препаратом,
поскольку это будет зависеть также от многих
других факторов (сравнительной оценки
безопасности и клинической эффективности;
наличия необходимых для разработки и внедрения
инвестиций, и т.д.). Прогноз, однако, может помочь
определить, какие тесты наиболее адекватны для
изучения биологической активности конкретного
химического вещества, и какие вещества из
имеющихся в распоряжении исследователя наиболее
вероятно проявят требуемые эффекты.
Чтобы облегчить знакомство специалистов с
методикой компьютерного прогнозирования
спектра биологической активности веществ в
Интернете организован специальный сайт http://www.ibmh.msk.su/PASS.
Здесь представлено подробное описание системы PASS,
даны примеры ее практического применения, ссылки
на публикации, имеется возможность бесплатного
тестирования системы. Пользователь может
подготовить MOL файл с помощью химического
редактора ISIS/Draw, также доступного
бесплатно в Интернете (http://www.mdli.com), направить
его на прогноз по сети и получить на дисплее
своего компьютера результаты прогноза спектра
биологической активности для данной молекулы
автоматически.
Свыше 80 ученых из 15 стран, включая Россию,
Украину, Латвию, Германию, Великобританию,
Францию, Бразилию и др., уже воспользовались этой
возможностью, получив прогноз биологической
активности для более чем 500 веществ.
Поройков В.В.
НИИ Биомедхимии РАМН
119832, Москва, Погодинская ул., 10,
E-mail: vvp@ibmh.msk.su