УДК 548.737; 547.435

Кристаллохимия фуллеренов

И.С.Неретин, Ю.Л.Словохотов

Институт элементоорганических соединений им. А.Н.Несмеянова Российской академии наук 119991 Москва, ул. Вавилова, 28, факс (095)135–5085

Рассмотрено современное состояние структурных исследований производных фуллеренов. Перечислены кристаллические структуры индивидуальных фуллеренов и их производных, экспериментально определенные по данным рентгеноструктурного анализа. Для классов соединений, мало исследованных методом рентгеноструктурного анализа, приведены данные порошковой дифрактометрии и EXAFS-спектроскопии. Описаны встречающиеся мотивы укладки фуллереновых сфер и показаны структуры наиболее характерных мотивов. Рассмотрены причины ротационной разупорядоченности, затрудняющей структурные исследования фуллеренов, а также способы ее описания. Сформулирована модель «резиновой полости», позволяющая качественно предсказать типичные взаимные расположения ориентаций разупорядоченной молекулы. С использованием информации, полученной из Кембриджского банка структурных данных, проанализировано перераспределение длин связей при σ- и π-координации углеренов и на качество получаемых для них дифракционных данных. Библиография — 282 ссылки.

Оглавление

- I. Введение
- II. Молекулярная структура фуллеренов
- III. Кристаллические структуры индивидуальных фуллеренов
- IV. Молекулярные комплексы
- V. Фуллериды металлов
- VI. Олигомеры и полимеры фуллеренов
- VII. «Бинарные» соединения
- VIII. о-Производные
- IX. *п*-Производные
- Х. Эндоэдральные соединения
- XI. Заключение

І. Введение

Фуллерены — семейство аллотропных модификаций углерода, кристаллы которых состоят из полых сфероидальных молекул C_n , объединенных ван-дер-ваальсовыми взаимодействиями. Наиболее изучены производные фуллеренов C_{60} (называемого также бакминстерфуллереном) и C_{70} . В индивидуальном состоянии выделены соединения C_n с n = 60, 70, 76, 78, 80, 82, 84, 88, 92 (см.¹).

И.С.Неретин. Кандидат химических наук, научный сотрудник лаборатории структурных исследований полимеров ИНЭОС РАН. Телефон: (095)135–9304. e-mail: ivan@neretin.ru

Ю.Л.Словохотов. Кандидат химических наук, ведущий научный сотрудник той же лаборатории. Телефон: (095)135–9304,

e-mail: slov@ineos.ac.ru

Область научных интересов авторов: структурные исследования немонокристаллических и частично упорядоченных систем (производных фуллеренов, интеркаляционных соединений дихалькогенидов переходных металлов, металлических нанокластеров и др.) рентгенодифракционными и рентгеноспектральными методами; химические приложения инструментальных синхротронных методов.

Дата поступления 15 декабря 2003 г.

Общее число публикаций по фуллереновой тематике к 2001 г. превысило 10000, однако доля работ, посвященных рентгеноструктурным исследованиям, среди них невысока (<400 различных структур на конец 2003 г.). Кристаллы фуллеренов и их производных содержат много дефектов и часто бывают двойниковыми. Кроме того, во многих структурно исследованных производных фуллеренов молекулы С_n квазисферической формы ротационно разупорядочены. Сосуществование в кристалле разных ориентаций молекул фуллерена, близких по энергии, приводит к ухудшению качества дифракционной картины. Проблема ротационной разупорядоченности особенно актуальна в случае ван-дерваальсовых комплексов, в которых молекулы фуллеренов химически не модифицированы. Для химически модифицированных производных фуллеренов появляется проблема сокристаллизации различных трудноразделимых изомеров присоединения, а для высших фуллеренов — наличие разных изомеров фуллеренового остова, которые статистически занимают эквивалентные позиции в кристаллической решетке, повышая общую разупорядоченность структуры. Все эти факторы затрудняют дифракционные исследования и снижают точность определения структур соединений данного класса. Однако именно эти методы, и в первую очередь рентгеноструктурный анализ (РСА), являются главными при исследовании производных фуллеренов ввиду сложности их молекулярного строения.

Обзоры кристаллических структур отдельных групп производных фуллеренов имеются в литературе,²⁻⁶ но общие закономерности строения молекул и кристаллов всего класса соединений до сих пор не были рассмотрены. В настоящем обзоре приведены данные структурных исследований производных фуллеренов дифракционными методами и проанализированы особенности их строения. Основное внимание уделено результатам РСА, содержащимся в Кембриджском банке структурных данных (Cambridge Structural Database, CSD) и в оригинальных публикациях. Имеющиеся литературные данные, позволяя выявить общие закономерности кристаллохимии производных фуллеренов, не могут быть полностью представлены в рамках одной обзорной статьи. Для некоторых соединений, логически связанных с темой обзора, приведены данные других методов (газовой электронографии, нейтронографии, порошковой рентгенографии, XAFS-спектроскопии).

II. Молекулярная структура фуллеренов

Стабильность молекулы C_{60} с геометрией усеченного икосаэдра в начале 1970-х годов независимо предсказали Осава⁷ и Бочвар с Гальперн.⁸ Молекула C_{60} была впервые зафиксирована в форме молекулярного иона при анализе массспектров продуктов лазерного испарения графита.⁹ Неравновесное охлаждение паров углерода приводит к образованию различных кластеров C_n , среди которых преобладает C_{60} . В масс-спектрах продуктов возгонки графита были зафиксированы и кластеры с меньшим значением *n*, однако соответствующие индивидуальные соединения не были выделены.

Разработанный позднее метод получения макроколичеств фуллеренов ¹⁰ основан на испарении графита в плазме электрической дуги с графитовыми электродами в инертной атмосфере (Не или Ar при давлении 10–100 мм рт. ст.). Образующаяся сажа содержит до 15-20% фуллеренов, которые далее экстрагируют и разделяют методом колоночной хроматографии. Среди получаемых этим способом фуллеренов преобладают С₆₀ (85%) и С₇₀ (14%), остальное количество (1%) составляют высшие фуллерены — С₇₆, С₈₄, С₉₀ и др.

Молекулы фуллеренов представляют собой выпуклые полиэдры с атомами углерода в вершинах, имеющие только пяти- и шестиугольные грани, т.е. карбоциклы с минимальным стерическим напряжением. Из теоремы Эйлера следует, что в таком случае пятиугольников должно быть двенадцать, а число шестиугольников может быть любым.[†] Простейшим «фуллереновым» полиэдром является пентагондодекаэдр, не имеющий шестичленных циклов. Соответствующий насыщенный углеводород (додекаэдран C₂₀H₂₀) был получен в 1980-е годы сложным многостадийным органическим синтезом.¹¹ Немодифицированный фуллерен С₂₀, по-видимому, неустойчив ввиду слишком большого стерического напряжения в ненасыщенном углеродном каркасе. Кластеры С₂₀ неустановленной геометрии были зафиксированы в газовой фазе при термическом разложении бромированного додекаэдрана.¹² Кристаллическая структура фуллерена С₃₆, о выделении которого сообщено в работе ¹³, не была определена.

† В соответствии с теоремой Эйлера для выпуклых многогранников $B - P + \Gamma = 2$, где B, P и Γ — числа вершин, ребер и граней соответственно. Пусть многогранник состоит из n пятиугольных и m шестиугольных граней. Тогда $\Gamma = n + m$, P = (5n + 6m)/2, так как каждое ребро является общим для двух граней, а B = (5n + 6m)/3, так как в каждой вершине сходятся три грани. Подставив значения Γ , P и B, после упрощения получим: n = 12.

Почти все фуллерены с экспериментально установленной молекулярной структурой удовлетворяют так называемому правилу изолированных пятиугольников (Isolated Pentagon Rule, IPR):14 пятичленные циклы в их молекулах не имеют общих вершин. При условии соблюдения этого правила простейшим из фуллеренов можно считать бакминстерфуллерен С₆₀ (рис. 1,*a*), следующим — С₇₀, и далее возможны фуллерены с любым четным числом атомов углерода. Правило изолированных пятиугольников кардинально ограничивает число возможных фуллереновых структур: так, запрещенный по IPR каркас C₆₆ без учета этого правила имеет 4478 различных геометрических изомеров.¹⁵ Однако были выделены индивидуальные металлофуллерены Sc₂@C₆₆, Sc₃N@C₆₈ (см.^{15, 16}), что свидетельствует, по-видимому, о нестрогости правила IPR, которое может нарушаться по крайней мере для химически модифицированных углеродных каркасов.

Начиная с C_{76} , возможны различные изомеры углеродного каркаса, удовлетворяющие IPR, причем некоторые из них являются хиральными и могут существовать в виде энантиомеров. Числа «фуллереновых» полиэдров (М), удовлетворяющих правилу изолированных пятиугольников, в зависимости от числа атомов (*n*) в углеродном каркасе могут быть следующими:

п	60	62 - 68	70	72	74	76	78	80	82	84	86	90	96
Μ	1	_	1	1	1	2	5	7	9	24	35	46	187

Топологическая номенклатура фуллеренов, учитывающая возможную хиральность, предложена авторами статьи ¹⁷. Сравнительная стабильность различных фуллеренов подробно исследована теоретически методами квантовой химии.^{18, 19} Расчеты, в частности, предсказали нестабильность электронейтральных молекул C_{72} и C_{74} , удовлетворяющих IPR.²⁰ Такие «квантово-химически запрещенные» фуллерены должны быть высокореакционноспособными

Рис. 1. Молекулы фуллеренов C₆₀ (*a*), C₇₀ (*b*), C₇₆ (*c*) и I_h -изомер C₈₀ (*d*).

На рис. *b* слева указаны типы симметрически неэквивалентных атомов углерода и их сферические эксцессы, справа — типы связей и образующие их атомы.

бирадикалами, однако они могут быть стабилизированы в виде дианионов, в том числе в форме эндоэдральных производных, благодаря переносу заряда с атомов металла, находящихся внутри полиэдра.²¹

Молекулярные структуры наиболее изученных углеродных каркасов представлены на рис. 1. Самым распространенным из фуллеренов является бакминстерфуллерен С₆₀, обладающий икосаэдрической симметрией (I_h). Его структура была впервые установлена методом ЯМР¹³С (спектр состоит из одного синглета²²). В молекуле С₆₀ все атомы симметрически эквивалентны (т.е. переводятся друг в друга операциями симметрии молекулы), однако существуют два типа симметрически неэквивалентных связей: расположенные на стыке пяти- и шестичленного циклов и на стыке двух шестичленных циклов (названные связями 5/6 и 6/6 соответственно). Последняя связь имеет больший вклад π-составляющей и меньшую длину. Расстояния С-С в С₆₀, найденные методом газовой электронографии (ГЭ),²³ равны 1.40 (6/6) и 1.46 Å (5/6); средние значения для 52 упорядоченных молекулярных комплексов С₆₀, рассчитанные нами на основе данных CSD, составляют 1.39 (6/6) и 1.45 А (5/6). Валентные углы в пятичленных циклах равны 108°, а в шестичленных — 120°. Сферический эксцесс ϕ , определяемый как дополнение суммы трех валентных углов при данном атоме до 360° , для C₆₀ равен 12° для всех атомов углерода.

Следующий по распространенности — нецентросимметричный фуллерен С₇₀ (см. рис. 1,*b*), имеющий симметрию D_{5h}, отличается от C₆₀ наличием дополнительного экваториального пояса шестиугольников. В нем имеется 5 симметрически неэквивалентных атомов и 8 различных типов связей, что согласуется с данными метода ЯМР.24 Длины связей в свободной молекуле определены методом ГЭ²⁵ с привлечением квантово-химических расчетов с оптимизацией геометрии молекулы по методу функционала плотности. Длины связей в С₇₀ по данным ГЭ, а также взятые из наиболее точной структуры молекулярного комплекса C₇₀ · 6 S₈,²⁶ определенной методом РСА, приведены в табл. 1. Экваториальная связь h типа 6/6 в C₇₀ (см. рис. 1,b) превосходит по длине все остальные; прочие связи типов 5/6 и 6/6 близки по длине и характеру к соответствующим связям в фуллерене С₆₀. Сферический эксцесс максимален для атомов углерода, расположенных на полюсах молекулы, и минимален для экваториальных атомов.

Молекулярные структуры высших фуллеренов менее изучены. Выделенный в чистом виде C_{76} , по данным РСА для его комплекса с серой $C_{76} \cdot 6 S_8$,²⁷ представлен хиральным изомером симметрии D_2 (см. рис. 1,*c*). Исследованный кристалл содержал рацемическую смесь энантиомеров, статистически занимающих одни и те же позиции.

Фуллерен С₇₈ по данным ЯМР представлен смесью двух изомеров симметрии $C_{2\nu}$ и D_3 в отношении 5: 1.²⁸ Основной

Таблица 1. Длины связей в молекуле фуллерена C_{70} (обозначения см. на рис. 1,*b*).

Связь	Тип	Число связей	Длина связи (Å), установленная с использованием метода			
			ГЭ ²⁵	PCA ²⁶		
a	5/6	10	1.46	1.45		
b	6/6	10	1.39	1.38		
с	5/6	20	1.45	1.45		
d	6/6	10	1.39	1.37		
е	5/6	20	1.47	1.45		
f	5/6	10	1.42	1.43		
g	6/6	20	1.40	1.41		
h	6/6	5	1.54	1.47		

изомер фуллерена C_{80} имеет симметрию D_{2d} ;²⁹ позднее был выделен также изомер симметрии D_{5h} .³⁰ Изомер C_{80} икосаэдрической симметрии I_h (см. рис. 1,*d*), по квантово-химическим данным наименее устойчивый в свободном виде, был получен и структурно исследован в форме эндоэдральных производных, стабилизированных за счет переноса заряда с атома металла на углеродный каркас. В отличие от молекулы C_{60} , где в каждом шестичленном цикле связи типа 6/6 и 5/6 альтернируют, молекула C_{80} с симметрией I_h содержит периленовые фрагменты из пяти конденсированных шестиугольников.

При исследовании структур высших фуллеренов C_{76} и C_{82} в виде сольватов с толуолом методом рентгеновской порошковой дифракции на синхротронном излучении (СИ)³¹ не удалось достоверно определить геометрию их углеродных скелетов.

По данным квантово-химического расчета ¹⁹ относительная устойчивость изомерных фуллереновых каркасов C_n^{q-1} изменяется в зависимости от их заряда q (рис. 2). Результаты дифракционных исследований эндоэдральных производных $M_n@C_{82}$ и $M_n@C_{84}$ рассмотрены ниже.

Чистый фуллерен C₈₄ по данным ИК-спектроскопии ³² состоит из смеси двух основных изомеров симметрии D_{2d} и D_2 . Его выделенный и структурно исследованный π -комплекс с иридием ³³ содержит углеродный остов симметрии D_{2d} со вкладом других неидентифицированных изомеров. Данные ЯМР для фуллерена C₈₈ интерпретированы ³⁴ как наложение спектров трех изомеров. При отнесении линий в спектре авторы опирались на результаты квантово-химических расчетов всех возможных изомеров, удовлетворяющих IPR.

Среди более крупных фуллеренов удалось выделить C_{92} , частично разделенный на фракции; одна из них (по данным ЯМР¹³С) содержит единственный изомер симметрии $C_{2\nu}$, а другая представляет собой смесь изомеров.³⁵ Также сообщалось о получении индивидуального кластера-«луковицы» (не исследованного структурными методами) с внутренним ядром C_{60} и внешней оболочкой C_{240} .³⁶

При частичном замещении атомов углерода на атомы бора и азота получают различные гетерофуллерены. Один из них состава С₅₉N выделен и исследован методом порошковой рентгеновской дифракции с уточнением структурной модели по методу Ритвельда. В чистом виде он представляет собой молекулярный кристалл, состоящий из димерных молекул (C₅₉N)₂.³⁷ Известно также катионное производное этого гетерофуллерена, исследованное методом РСА в форме [(C₅₉N⁺CB₁₁H₆Cl₆)₂Ag⁻]·3(*o*-C₆H₄Cl₂).³⁸ В этой структуре атом азота ориентационно разупорядочен между

Рис. 2. Относительная устойчивость различных геометрических изомеров C_{82}^{q-} (см.¹⁹).

Рис. 3. π -Уровни энергии C₆₀ (*I*) и C₇₀ (*II*) в единицах резонансного интеграла (β). Пунктирная линия соответствует энергии 2р-АО изолированного атома углерода.

двумя позициями в 60-атомном кластере $C_{59}N^+$, изоэлектронном и изоструктурном бакминстерфуллерену.

Спектр энергий молекулярных орбиталей π -типа для C_{60} был впервые рассчитан простым методом Хюккеля.⁸ Схемы энергетических уровней молекул C_{60} и C_{70} представлены на рис. 3. Ввиду высокой симметрии молекулы бакминстерфуллерена ее низшая свободная молекулярная орбиталь (НСМО) вырождена трехкратно, а высшая занятая молекулярная орбиталь (ВЗМО) — пятикратно (см. рис. 3,*a*). Несимметричная молекула C_{70} имеет лишь невырожденные и дважды вырожденные уровни (см. рис. 3,*b*). Разности энергий (НСМО – ВЗМО) в стабильных фуллеренах C_n , определенные в квантово-химических расчетах, в среднем уменьшаются с ростом *n*, стремясь в пределе к нулю (величине для графита ³⁹).

Таким образом, полиэдрические молекулы фуллеренов сохраняют такие существенные черты плоских сопряженных л-систем, как низкоэнергетическое π -связывание и стабилизация альтернантных структур. Вследствие этого энергетическая структура их граничных орбиталей может быть воспроизведена простым методом Хюккеля, а сами молекулы С_n проявляют такие свойства ненасыщенных углеводородов, как присоединение к «кратным» связям 6/6 и образование π -комплексов с металлами. Вместе с тем химически не модифицированные углеродные каркасы фуллеренов не содержат полностью делокализованных π -систем ароматического типа, и кратные связи в них остаются частично локализованными.

III. Кристаллические структуры индивидуальных фуллеренов

Фуллеренсодержащие соединения, данные о структуре которых депонированы в CSD) версии 2003 г., приведены в табл. 2. Их общее число составляет 382 (включая повторные исследования). В ряде случаев данные CSD не содержат координат атомов. Соединения разделены на классы по признаку глубины модификации молекулы фуллерена. В табл. 2 представлены также опубликованные данные РСА, не включенные в CSD по состоянию на октябрь 2003 г., и некоторые соединения, исследованные методами порошковой дифракции.

Чистый кристаллический фуллерен С60, полученный пересублимацией в вакууме, имеет гранецентрированную кубическую решетку (ГЦК).53 При комнатной температуре молекулы в ней ротационно разупорядочены. При понижении температуры до 258К происходит фазовый переход, сопровождающийся частичным упорядочением молекул и понижением симметрии кубического кристалла с Fm3m до Ра3. При дальнейшем охлаждении динамическая разупорядоченность постепенно сменяется статической.⁵⁴ При еще более низких температурах кристалл содержит статистическую смесь молекул в двух ориентациях (по данным нейтронографии при 5 К (см.55)), однако полного «вымораживания» данной степени свободы не наблюдали. Кратчайшие межмолекулярные контакты С…С между соседними молекулами C₆₀ (3.00 Å) почти на 0.2 Å короче межслоевых контактов С…С в графите⁵⁶ и, по-видимому, отвечают ван-дерваальсовому отталкиванию, скомпенсированному взаимным притяжением более отдаленных атомов соседних молекул. Локальное разделение зарядов в углеродном каркасе и электростатическое притяжение соседних молекул, повернутых друг к другу разноименно заряженными участками (первоначально предложенное для объяснения сокращенных контактов С…С (см. 57)), по-видимому, не имеет места. Физические исследования динамики разупорядоченных фуллереновых остовов в кристалле нами подробно не рассматривались, так как основное внимание в настоящем обзоре уделено структурам производных фуллеренов в связи с их химическими свойствами.

В специальных условиях удается получить кристаллический порошок метастабильной гексагональной модификации C_{60} , в которой молекулы уложены по типу двухслойной плотнейшей шаровой упаковки.^{58, 59} Раннее сообщение ⁶⁰ о другой гексагональной модификации фуллерена с параметрами a = 33.54, c = 10.11 Å не подтвердилось. Вероятно, данные параметры соответствуют не чистому фуллерену, а некоторому сольвату с малым содержанием растворителя.

Более сложны фазовые превращения фуллерена С70, молекула которого по форме близка к вытянутому эллипсоиду вращения. От высокотемпературной ГЦК-фазы, характеризующейся изотропным вращением молекулы, он при понижении температуры до 340 К переходит к тригональной (ромбоэдрической) фазе, в которой длинные оси молекул фиксированы вдоль кристаллографической оси 3 и вращение происходит только вокруг них (рис. 4). При более низкой температуре (280 К) молекулы окончательно упорядочиваются, и образуется моноклинная фаза, по параметрам ячейки близкая к тригональной ($a \approx c, \beta \approx 120^{\circ}$). Как и в случае С₆₀, известна метастабильная модификация С₇₀ с гексагональной плотнейшей упаковкой (ГПУ) изотропно разупорядоченных молекул. При понижении температуры эта модификация претерпевает два аналогичных фазовых перехода с упорядочением вращения. Между высокотемпературными ГЦК- и ГПУ-модификациями существует область промежуточных фаз с нерегулярным наложением слоев.61

Для некоторых высших фуллеренов, форма молекул которых ближе к сферической, зафиксирована только высокотемпературная ГЦК-фаза, а фазовые переходы при низких температурах подробно не исследованы.⁶² Для С₈₄ методом порошковой дифракции установлены два фазовых перехода при 235 и 181 К, однако строение низкотемпературных фаз неизвестно.⁶³

Код CSD (ссылка)	Формула ^а	<i>R</i> -фактор	Мотив	мкч	<i>T</i> , K
SOCTOT01	C ₆₀	0.100	ГЦК	12	110
SOCTOT02	C_{60}	0.059	»	12	295
QUQDOV	$(C_{70})_{\infty}$	0.066	Искаженная ГПУ	12	100
	Сольваты и молекуляр	ные комплексы			
MAPSUR	$C_{60} \cdot 1.5 CS_2$	0.058	3D-Каркас	10	90
POFKUQ	$C_{60} \cdot n - C_5 H_{12}$	0.130	»	10	295
EDEWAL	$C_{60} \cdot C_2 H_3 Cl_3$	_	_	_	223
TEYCEF	$C_{60} \cdot 2 (m - C_6 H_4 M e_2)$	0.147	3D-Каркас	10	20
PIGWUX	$C_{60} \cdot 2 \operatorname{CCl}_4$	_	Пространственный гексагональный	8	295
YOLTEY	$C_{60} \cdot 2 CHBr_3$	_	То же	8	295
YOLTIC	$C_{60} \cdot 2 \operatorname{CHCl}_3$	_	»	8	295
YOLTOI	$C_{60} \cdot 2 CH_2 Cl_2$	_	_	_	295
HOSJAA	C ₆₀ · 2 PhBr	0.057	Гексагональные слои	6	150
JUGCET	$C_{60}\cdot 4C_6H_6$	0.101	Соты	6	173
YOLTAU	$C_{60} \cdot 13 \operatorname{CCl}_4$	—	Изолированные	0	295
YOLSOH	$C_{60} \cdot 13 C_6 H_{12}$	—	»	0	295
JOCSOJ	$(C_{60}, C_{70}) \cdot x C_6 H_{12}$	0.109	»	0	295
YOLSUN	$C_{70} \cdot 13 C_6 H_{12}$	_	»	0	295
NUDDOF	$C_{70} \cdot m - C_6 H_4 Me_2$	0.213	3D-Каркас	10	295
ZOYSOV	C ₇₆ · PhMe	0.048	Пространственный гексагональный	8	295
ZOYSEL	C ₈₂ · PhMe	_	То же	8	295
XIFMEE	$C_{60} \cdot 3 \operatorname{TiCl}_4$	0.038	Искаженный «алмаз»	4	180
XOBVIT	C ₇₀ · 2 TiCl ₄	0.059	3D-Каркас	7,8	180
JUVYAA	$C_{60} \cdot CH_2I_2 \cdot C_6H_6$	0.055	Пространственный гексагональный	8	122
LAVNIF	$C_{60} \cdot I_2 \cdot PhMe$	0.076	3D-каркас	8	143
MAQFIT	$4 C_{60} \cdot 3 TDZ$	0.046	»	9	100
YITCUZ	$C_{60} \cdot S_8 \cdot CS_2$	0.069	Соты	8	295
HEGPAK	$C_{60} \cdot 2 S_8$	0.041	Алмазоподобный	4	295
TONDUV	$C_{60} \cdot TMPD$	0.080	Гексагональные слои	6	295
SOMGIK	$C_{60} \cdot 3 [p - C_6 H_4 (OH)_2]$	0.198	Простой кубический	6	295
MIMROP	$C_{60} \cdot PBMP$	0.131	3D-Каркас	6	293
NIYBOM	$2 \operatorname{C}_{60}$ · TPBP · $4 \operatorname{CS}_2$	0.049	»	5	170
NIRLOP	$C_{60} \cdot Ph_3SiH$	0.156	Соты	6	213
YEKBOF	$3 C_{60} \cdot 2 CTV \cdot PhMe$	0.142	Гексагональные слои	6	295
CEMPAL	$C_{60} \cdot AT$	0.086	Соты	6	150
ZUMCIT	$C_{60} \cdot BTX \cdot CS_2$	0.057	Колонки	2	295
TAWKEH	$C_{60} \cdot CCTV$	0.123	Цепочки	2	183
PASQAB	$C_{60} \cdot DAN \cdot 3 C_6 H_6$	0.069	Квадратные слои	4	295
CEMNUD	$C_{60} \cdot 2 \operatorname{Trip} \cdot 2 (o - C_6 H_4 Me_2)$	0.095	Гексагональные слои	6	150
FOFKEQ	$C_{60} \cdot OPCTSil \cdot 0.5 PhMe$	0.051	Двоиные цепочки	4	123
YOLVOK	$C_{60} \cdot 2 \text{ HM IPH}$	0.098	 	_	295
BACQAX	$C_{60} \cdot IBBCN \cdot I.5 PhMe$	0.114	Колонки	2	153
KUVNOE	$C_{60} \cdot 2Cp_2Fe$	0.060	I ексагональные слои	6	143
NAGNAK	$C_{60} \cdot 3 C_{6} H_{6} \cdot 2 P d_{6} C l_{12}$	0.093	цепочки	2	130
PIGPEA	$C_{60} \cdot Cp_4 Fe_4(CO)_4 \cdot 3 C_6 H_6$	0.065	—	_	205
	$2 C_{60}$ · 4 BEDT-TTF · Cp ₂ Fe · 0.5 CS ₂	- 0.105	— И		295
SADVUU	C_{60} · I BrCalix[5]	0.105	искаженный «алмаз»	4	295
SADWAV	C_{60} . TBuCally[5]	0.198	Графитоподооныи	5	293
NIFIAC	C_{60} · IMCallx[5]· 4 H_2 O	0.083	Островнои	1	293
	C_{60} · PMPHCallx[5] · CH ₃ OH · 5 H ₂ O	0.097	»	1	293
NOPLEV	C_{60} · IDIFCallx[4]	0.117		5	173
DUIDOR	$2 C_{60} Canx[0] FiniteC_{11} TPColix[4] + 4 PriOH + a C_1H_Ch$	0.119	УЛ-Каркас	0	173
TUDCOK	C_{60} If $Canx[4]$ 411 Off <i>b</i> -C ₆ 114C1 ₂	0.119	w	0	205
INDEOK	$C_{60} = 2 \text{ DID}[WCallx[5]] = 8 \Pi_2 O$	0.108	" ``	0	295
BOYOOU	$C_{60} \ge 1 \operatorname{DTHCallx[3]}$	0.150	» 	0	103
NIGPOI	$C_{co} \cdot 2 \text{ TITRCalix}[4]$	0.134		0	205
IAXVIO	$C_{00} \sim 2 \operatorname{PD} Calix[5] \cdot 2 \operatorname{Ph} Me$	0.009		0	173
ADACIR	$5C_{co} \cdot 4 \text{ PHC alig} [5] \cdot 2 \text{ PhM}_{P}$	0.124	" Сложные церочки	4 6	173
MEOGIY	$C_{co} \cdot \text{RiCalix[5]} \cdot 2 \text{PhMe}$	0.209	Изопированный	ч, 0 П	148
FIBVIV	C_{60} TMTSeF $\cdot 0.5 C_{c}H_{c}$	0.050	ЗД-Каркас	6	295
NIXPOZ	C_{60} TMTSeF · 2 CS ₂	0.047	Квалратные спои	4	295
- · · · · · · · · · · · · · · · · · · ·		0.017			_//

Таблица 2. Производные фуллеренов, для которых установлены кристаллические структуры (повторные и независимо определенные структуры не приведены).

Код CSD (ссылка)	Формула ^а	<i>R</i> -фактор	Мотив	МКЧ	<i>T</i> , K
	Сольваты и моле	екулярные комплексы			
UCIKEW	$C_{60} \cdot DBTTF \cdot C_6H_6$	0.069	_	_	153
XOCJII	$C_{60} \cdot MDT$ -TTF $\cdot 2 CS_2$	0.070	Гексагональные слои	6	293
YOCFOL	$C_{60} \cdot BDMT - TTeF \cdot CS_2$	0.038	_	_	295
LITPUZ	C ₆₀ · DTDSeF	0.050	Квадратные слои	4	295
FONPED	$C_{60} \cdot 1.33 S_4 N_4 \cdot 0.67 C_6 H_6$	0.132	_	_	153
SUGBUR	$C_{60} \cdot BEDTB(EDT) \cdot CS_2$	0.073	Двойные цепочки	3	295
KUMMEK	C ₆₀ · 2 BEDT-TTF	0.058	То же	4	150
TODZUH	C ₆₀ · 2 DMTEDT-TTF	_	_	—	295
TOFBAR	$C_{60} \cdot 2 TMTTF$	_	_	_	295
DAGSUZ	$C_{60} \cdot 2 \text{ TMDTDM-TTF} \cdot 3 \text{ CS}_2$	0.060	_	-	153
UBOJOK	$2 \operatorname{C}_{60} \cdot \operatorname{H}_2 \operatorname{TPP} \cdot 4 \operatorname{C}_6 \operatorname{H}_6$	0.062	Гофрированный графит	3	120
UBOJUQ	$2 \operatorname{C}_{60} \cdot \operatorname{H}_2 \operatorname{TPP} \cdot 3 \operatorname{C}_6 \operatorname{H}_6$	0.131	3 <i>D</i> с каналами	5	120
VEMNOQ	$C_{60} \cdot H_2 TPP \cdot 3 PhMe$	0.087	Цепочки	2	203
VEMQAF	$3 C_{60} \cdot 2 TDMPP \cdot 4 PhMe$	0.092	Изолированный	0	203
VEMQEJ	C_{60} · TPivP	0.088	»	0	295
VEMPEI	$C_{60} \cdot H_2 TDBPP$	0.091	»	0	203
ZAPNEJ	$C_{60} \cdot 2 H_2 ODAPz \cdot PhMe$	0.165	Колонки	2	295
BAQRUG	$C_{60} \cdot CuTMCTD$	0.104	Гофрированные слои	5	123
РІОНОМ	$C_{60} \cdot N_1 TMCTD$	0.052	Тоже	5	173
HIVKEC	$C_{60} \cdot N_1 OMCTD \cdot 2CS_2$	0.088	Цепочки	2	123
FOPZEP	$C_{60} \cdot \text{NiODAPz}$	0.061	»	2	295
CELYOH	$C_{60} \cdot CIFeOEP \cdot CHCl_3$	0.126	»	2	130
ABOSOZ	C_{60} ·AgOEP·2C ₆ H ₆	0.036	Гофрированный графит	3	83
QARPUU	$C_{60} \cdot PdOEP \cdot 1.5 C_6 H_6$	0.079	1 рафитоподооныи	3	83
QARQAB	$C_{60} \cdot C_{40} OEP \cdot 2C_{6}H_{6}$	0.037	» 11	3	83
VEOVIA	$C_{60} \cdot Ru(CO)OEP \cdot 2 PnMe$	0.095	цепочки	2	83
LOUSOO	$C_{60} \cdot 2 \operatorname{Ph}_3 \operatorname{ASAUCI}$	0.032	изолированныи	0	205
OUELUX	$C_{60} \sim 2 \Gamma II_3 \Gamma A U C I$	0.078	» Oormonwoğ	1	295
FORVEO	$2C_{60} C_{01} AF^{-5.5} (0 - C_{6} H_4 C_{12})^{-0.45} C_{6} H_6$	0.085	Изодировании и	1	205
CELTIW	$C_{60} \sim 2 C_{0} OEP \cdot CHCl_{2}$	0.034	w	0	154
CELIIW	$C_{60} \ge 200 \text{EF}$ CHCl	0.082		0	156
CELVIK	CoO: 2 CoOEP CHCl	0.069	" ``	0	130
OAROU	$C_{60} = 2 \text{ ZnOEP} \cdot 2 C_{cH_c}$	0.009	" 》	0	83
ABOSUE	$C_{60} = 2 \text{ NiOEP} = 2 \text{ C}_{6116}$	0.077	»	Ő	83
TIKHAW	C ₆₀ ·CoTDBPP	0.032	»	Ő	83
UBOJIE	$C_{60} \cdot 2 CuTPP$	0.058	Колонки	2	110
XEYZAC	C_{60} · BPZnOEP	0.075	Изолированный	0	163
YIKVET	$C_{60} \cdot 6 Ph_3Sb$	0.041	»	0	130
BEJLOR	$C_{70} \cdot 2 Cp_2 Fe$	0.077	Гексагональные слои	7	130
NOBLIZ	2 C ₇₀ · Calix[6] · PhMe	0.126	То же	7	173
DATQEU	$C_{70} \cdot BTX \cdot 0.5 CS_2$	0.080	Квадратные слои	4	295
HAZQAA	C ₇₀ ·OMDBCTD	0.047	Гофрированные слои	5	173
VEMQUZ	2 C ₇₀ · NiTTolP · 2 PhMe	0.071	Двойные цепочки	3	198
HASWIH	$2 C_{70} \cdot 9 [p - C_6 H_4 (OH)_2] \cdot 2 C_6 H_6$	0.104	Островной	1	295
WITRAS	$3 C_{70} \cdot 4 BNDTY \cdot 4 C_6 H_6$	0.090	Искаженный простой кубический	4	295
GOSYOC	$C_{70} \cdot C_2 B_{10} H_{12} \cdot CTV \cdot C_6 H_4 Cl_2$	0.094	Цепочки	2	123
CELWAR	$C_{70} \cdot CoOEP \cdot CHCl_3 \cdot C_6H_6$	0.102	»	2	156
CELYEX	$C_{70} \cdot NiOEP \cdot CHCl_3 \cdot C_6H_6$	0.099	»	2	130
CELYIB	$C_{70} \cdot CuOEP \cdot CHCl_3 \cdot C_6H_6$	0.126	»	2	156
QEZFIK	$C_{60} \cdot PdBPPyP \cdot 2C_6H_{14} \cdot 0.5PhMe$	0.075	Островной	1	213
LAZMEE	$C_{70} \cdot 6 S_8$	0.037	Гексагональные слои	6	100
UBOJEA	$C_{70} \cdot CuTPP \cdot 1.5 PhMe \cdot 0.5 C_2HCl_3$	0.103	Цепочки	2	110
VEMQOT	$C_{70} \cdot ZnTPP$	0.102	»	2	203
VEMQIN	$C_{70} \cdot H_2 TDMPP \cdot 4 PhMe$	0.143	Изолированный	0	295
RATCUK	$C_{76} \cdot 6 S_8$	0.040	Гексагональные слои	6	180
(40)	$C_{60} \cdot CHBr_3$	0.137	3D-Каркас	10	150
(41)	C ₆₀ · 2 PhI	0.030	Гексагональные слои	6	110
(41)	$C_{60} \cdot 2 (m - C_6 H_4 B r_2)$	0.029	Пространственный кубический	6	110
(41)	$C_{60} \cdot 3 (o - C_6 H_4 B r_2)$	0.144	Алмазоподобный	4	110
(42)	$C_{60} \cdot C_6 H_3 Ph_3 - 1, 3, 5$	0.078	Графитоподобный	3	110
(42)	$C_{60} \cdot 2(C_6H_3Ph_3-1,3,5) \cdot PhCl$	0.090	Колонки	2	110
(43)	$C_{60}^{-}TDAE^{+} \cdot 2TBPD$	0.100	Изолированный	0	110
(44)	$2 C_{60} \cdot BNTTF \cdot PhMe$	0.099	3D-Каркас	7	110

Код CSD (ссылка)	Формула ^а	<i>R</i> -фактор	Мотив	мкч	<i>T</i> , K
	Сольваты и молекулярн	ые комплексы			
(44)	$2 C_{60} \cdot EDT(DET)TTF$	0.136	3D-Каркас	7	110
(45)	$C_{60} \cdot 2 PyZnTPP \cdot PhMe \cdot Cp_2Fe$	0.099	Изолированный	0	110
(45)	$C_{70} \cdot 2 PyZnTPP \cdot PhMe \cdot 0.5 C_2HCl_3$	0.116	»	0	110
(46)	$2C_{60}\cdot TPyP\cdot 4ZnTPP\cdot 1.75PhCN$	0.087	Островной	1	110
	Ионные комплексы с нейтрал	њным фуллере	2НОМ		
PIBOOG	C60 · 4 NaH	0.086	_	_	295
HIFCOO	$C_{60} \cdot 5 \text{ AgNO}_3$	0.149	Пространственный кубический	6	140
XAYXOK	$C_{60} \cdot BEDT - TTF^+ \cdot I_2^-$	0.034	Гексагональные слои	6	90
GUDZEK	$C_{60} \cdot \text{FeTPP}^+ \cdot (C_6F_5)_4B^- \cdot 2.5 (o - C_6H_4Cl_2)$	0.093	Цепочки	2	203
	Ион-радикальные соли	и фуллериды			
KUGGIC	C_{-}^{-} ·TDAF ⁺	0.086	Пространственный кубинеский	6	295
GEXOLIV	C_{60}^{-} (PhMe) ₂ Cr ⁺ · CS ₂	0.138	Соты	6	150
MORWIIV	$C_{60} = (PhMe)_2 Cr^+$	0.077	Искаженный простой кубический	6	235
DUKHAE	C_{60}^- : Cp ₂ Cp ⁺ : CS ₂	0.151		8	123
ZESHIO	$C_{60} = C_{60} = C_{52}$	0.151		4	125
	C_{60}^{-} (MCSCP)2(M CS2 C^{-} · 2 Ph .P ⁺ · 1 ⁻	0.047	Изодировани и	4	205
VERDUE	$C_{60} = 21 \text{ mar}$	0.047	»»	0	295
IEDUE	C_{60}^{-} 2 Ph P^{+} Pr^{-}	0.031	»	0	295
YUXCAV	$C_{60} \cdot 2 P \Pi_4 P \cdot Br$	0.083	»	0	293
YUXCEZ	$C_{60} \cdot 2 \operatorname{Pn}_4 \operatorname{As}^+ \cdot \operatorname{Cl}$	0.126	»	0	295
FULLER	$C_{70} \cdot 2Pn_4P \cdot 1^-$ $C_{60}^- \cdot Cs^+$	0.210	» Объемно центрированный кубический	0 18	295 295
VEXLIW	C^- · K ⁺	_	(ОЦК)	_	295
HEIDEE	C_{60}^{n-} K $N_{9}^{+} \cdot m$ THE	_		_	295
HEIDU	C_{60}^{n-} in K ⁺ in THE				295
	C_{60}^{-} (Db. D). N ⁺	0.020	—	_	295
WEZVEE	C_{60}^{2-} (1 II 31)21 C^{2-} 2 (D b, D). N ⁺	0.020		_	108
NAPPOI	C_{60}^{2-} 2 PbCH-NMe ⁺ · 3 NH-	0.052	Крадрати не спон	4	113
	C_{60}^{2-} : 2 Crypt K + : 4 PbMe	0.052	Изодировании й	0	113
PUHII	C_{60}^{2-} : Mp(NH ₂) ²⁺ : 6 NH ₂	0.035	Ква прати не спон	1	113
RAINIZ	C_{60}^{2-} : $C_{60}(NH_{*})^{2+}$: 6 NH_{*}	0.053	То же	- 1	1/3
NUHUV	$C_{60}^{2-} \cdot Ni(NH_{2})^{2+} \cdot 6 NH_{2}$	0.037	N	4	113
RAINOF	C_{60}^{2-} : 7_{n} (NH ₄) ²⁺ : 6 NH ₄	0.079		4	1/3
DUHIOD	C_{60}^{2-}	0.047		4	113
NUSVAV	$C_{60}^{2-} \cdot \mathbf{B}_{2}(\mathbf{NH}_{2})^{2+} \cdot 6 \mathbf{NH}_{2}$	0.023	″ Пространствении ий кубинеский	6	113
EPOVOI	$C_{60} = B_{0}(NH_{3})_{6} = 0 NH_{3}$	0.023	А пирановобщий	4	1/2
	C_{70} Ba(1113) ₉ / 1113 C^{3-} 2 K + 14 THE	0.119	Изалираранный	4	145
	C_{60}^{3-} NUL 2 K +	0.109	Изолированный	12	205
COPVIC	C_{60}^{3-} + 2 Crown K^{\pm} + 2 DhMa	0.031	Искаженный ГЦК	12	110
WEIDUW	C_{60}^{3-} 2 N ₁₀ + 2 PHMe	0.082	гизолированный	12	27
WERKUW	C_{60}^{3-} 2 Na ⁺ Rb ⁺	0.129	ТЦК	12	27
WESTET	$C_{60}^{3-} 2C_{5}^{+} D_{5}^{+}$	0.032	»	12	20
AASKUA	$C_{60} \cdot 2CS + KD$	_	»	12	293
ICECEY	C_{60}^{9-} 3 K^{+} 2 R_{-}^{2+}	-	»	12	200
QUHYOH	C_{60}^{-} (3 K $^{+}$ (3 Ba ²)	0.075	ОЦК	8	10
(47)	$C_{60}CS^{+} \cdot CoTPP \cdot 1.64 PnCN \cdot 0.36 (\partial -C_{6}H_{4}CI_{2}) \cdot CH_{3}CN$	0.121	Островнои	1	222
(38)	C_{59} N $Ag(CB_{11}H_6CI_6)_2 \cdot 3(0 - C_6H_4CI_2)$	0.0693	изолированный	0	223
	Бинарные соеби	чения			
VUWFUO	$C_{60}O$	0.096	Изолированный	0	19
YOSHIX	$C_{60}O_2$	0.052	»	0	295
CELZAU	$(C_{60})_2$ O · 2 OEPCo · 1.2 CHCl ₃ · 0.8 C ₆ H ₆	0.151	»	0	130
EBUFAI	$C_{60}F_{48} \cdot 2 (C_6H_3Me_3-1,3,5)$	0.051	»	0	108
JUHJIF	$C_{60}Br_{24} \cdot Br_2$	0.038	»	0	143
MEBBOK	$C_{60}F_{18}O \cdot PhMe$	0.052	См. ^ь	См.ь	173
SUDVIW	$C_{60}Br_8\cdot 2Br_2$	0.137	_	_	173
SUDVOC	$C_{60}Br_6 \cdot Br_2$	0.092	_	_	173
XAFLIZ	$C_{60}F_{18}$ · PhMe	0.049	См. ^ь	См. ^b	100
XAPSEM	$C_{60}F_{17}CF_3 \cdot 2 PhMe$	0.066	См. ^b	См.ь	173
ACULUF	$C_{60}Me_4PhO_2(OH)$	0.045	Соты	7	173
ACUMAM	$C_{60}Me_6$	0.123	Гофрированные гексагональные слои	7	173
(48)	$C_{70}Br_{10}$	0.0553	3D-Каркас	5	153
(48)	$C_{70}Br_{10} \cdot 3 Br_2$	0.1388	Соты	5	170

Код CSD (ссылка)	Формула ^а	<i>R</i> -фактор	Мотив	мкч	<i>T</i> , K
	σ-Про	изводные			
AFICAT	C ₆₀ C ₂ (CN) ₄ O · HMTTF	_	_	_	295
BAVKUE	C_{60} Mcbcd·CHCl ₃ ·0.5C ₆ H ₁₄	0.049	Гофрированные слои	5	120
BIFFUR	C_{60} Ppo·CS ₂	0.084	_	_	295
CODVOG	T_h -C ₆₀ (Tmp) ₆ ·4 H ₂ O	0.071	Изолированный	0	100
COFCIJ	$D_3 - C_{60}(\text{Tmp})_6 \cdot 0.11 \text{ C}_3 \text{H}_6 \text{O} \cdot 4 \text{ H}_2 \text{O}$	0.053	»	0	148
DEXSOO	$C_{60}DMalK^+PF_6^- \cdot CH_2Cl_2 \cdot 0.5C_6H_6$	0.078	Двойные цепочки	3	243
DIPWEE	$C_{60}(Fl)_2 \cdot TBrCalix[3] \cdot 2 PhMe$	0.081	Изолированный	0	295
FERYOQ	$C_{60}(CN)(Tmopp) \cdot PhMe$	0.046	Соты	6	123
GASFEL	$(C_{60}Mal_5CPv_2)_2[Pt(PPh_3)_2]_2^{4+} \cdot 4(CF_3SO_2^{-})$	0.092	Изолированный	0	295
GASFIP	$C_{60}Mal_5CPv_2 \cdot C_6H_6 \cdot 1.2 Diox$	0.096	»	0	295
HATGOY	$C_{60}(\text{Dmbdm}) \cdot 0.5 C_6 H_6$	0.038	3D-Каркас	6	295
HELWEA	$C_{60}C(Ph)C_6H_3(MeO)_2 \cdot 2 CHCl_3$	0.062	Алмазополобный	4	295
HERNAT	$C_{60}C(C_4SiMe_2) \simeq 0.5CS_2$	0.053	Соты	5	100
HERNEX	$C_{40}C(C_4SiMe_3)_2 \cdot 2PhMe$	0.049	Срафитополобный	3	100
HUCNAU	$C_{40}PPZnTPP:C_{7}H_{14}$	0.092	Иепочки	2	218
IUTNAN	C_{a} Dnbdm: a -C ₄ H ₄ Cl ₂	0.092	Стои	5	295
LIKGER	C ₆₀ Mal:CHCh	0.045	3D-Kaprac	8	193
NACVIW	C_{00} CHE: 2($c_{\rm e}$ CH+Cl ₂)	0.045	Лостранственный кубинеский	6	178
NACVIX	C_{60} ent	0.055	пространственный кубический	0	205
NACVIA	$C_{60}Am$	- 0.062			295
NAFUAL	$C_{60}[S1(S11V1e_3)_{3}]_2 \cdot C_{52}$	0.062	2. В навиза	4	293
	$C_{60}(\text{Pip})_2 \cdot 0.5 \text{ CH}_2 \text{ Cl}_2$	0.005	5D-каркас	0,7	120
NAFLAH	$C_{60}(PIP)_2 \cdot 0.5 \text{ El}_2 \text{ O}$	0.052	Соты	0, 8	130
NAKZIP	$(C_{60})_2 \cdot 4 (0 - C_6 H_4 C_{12})$	0.067	Слои	20	295
NAWLAY	C_{60} Mpc · 0.5 C_{6} H ₆	0.043	Двоиные слои	7,8	120
NISNOS	$C_{60}C(C_6H_4Br)_2$	0.033	I ексагональные слои	6	100
NIIGAY	$C_{60}(FI)_4 \cdot 3 PhMe$	0.061	Цепочки	2	203
PIPNIL	$C_{60}(Alz) \cdot CS_2$	0.060	3D-каркас	6	173
RERLAB	$C_{60}(Alz) \cdot PhMe$	0.040	I ексагональные слои	6	253
QAJMET	$C_{60}(m-XMal)_3 \cdot 3.5 CH_2Cl_2$	0.085	Изолированный	0	228
QAWRUB	$C_{60}(CH_2Ph)_4 \cdot CS_2 \cdot 0.5 C_6H_{14}$	0.062	Квадратные слои	4	223
QAWSAI	$C_{60}(CH_2Ph)_4 \cdot 2CS_2$	0.063	Гофрированный графит	3	223
QICZIL	$(C_{60}O)_2[NMe(CH_2)_3NMe]_4 \cdot 2 CHCl_3$	0.198	Гофрированные слои	3 - 4	295
RAWQAH	$C_{60}Ph_5Tl \cdot 2.5 THF$	0.079	Цепочки	2	295
RAZZUN	$C_{60}Bqd \cdot C_6H_6$	0.025	_	—	295
REBLAL	$C_{60}SPPIz \cdot 2 (o - C_6H_4Cl_2)$	0.056	Гофрированный графит	3	148
RECCIL	C_{60} TPPPyr·CHCl ₃	0.080	Островной	1	163
REDJEP	C ₆₀ Epp	0.062	3D-Каркас	10	295
RERKUU	C ₆₀ BCIz · PhMe	0.047	Соты	7	295
RUNQEW	C ₆₀ (Mal) ₄ · 2 CHCl ₃	0.041	Колонки	2	100
TEKRIK	$C_{60}Mpd \cdot CS_2$	0.045	Соты	7	295
TIMTIS	$[C_{60}C(C_2SiPr_3^i)]_2C_4 \cdot 2PhMe$	0.047	»	5	100
TIYGAJ	C_{60} Dmbd · CS ₂	0.046	_	_	295
TODBUJ	C ₆₀ Trz	0.091	3D-Каркас	9	193
TOPROF	$C_{60}(o-XMal) \cdot CHCl_3$	0.064	Гофрированные слои	5	295
TOWQOL	$C_{60}C_4H_4Fe(CO)_3 \cdot 2.5CS_2$	0.060	Пространственный кубический	6	156
TUJSIA	$C_{60}S_{2}Fe_{2}(CO)_{6} \cdot 0.25 PhMe \cdot 0.5 C_{5}H_{12}$	0.057	3D-Каркас	6	198
TUJXEB	$C_{60}(H)Fl \cdot 2C_6H_6$	0.049	Гофрированные квадратные слои	4	295
TUOJIY	C_{60} Dtdm · CS ₂	0.056	3Д-Каркас	7	295
VEHOII	C ₆₀ C(COOH)Pcp	0.167	Гофрированные квадратные слои	4	295
VUBBEZ	$C_{60}OsO_4(4-Bu^tPv)_2$	0.103	-	_	295
WECZAE	$C_{60}Me_sO_2(OH)$	0.075	Соты	8	173
VAPWIV	C_{co} Hex · 1 5 PhCl	0.116	Лвойные цепочки	4	295
VIRXEC	CoCCndm: 3 CoHe	0.063	Срафитополобный	3	295
ZAKMUT	C_{60} (Mal) Mbde : 2 C H	0.009	Изолированный	0	233
ZEDWEK	$C_{60}(Mal)_{3}Mbdc = 2 C_{6116}$	0.049	»»	0	205
	$C_{60}(\text{man}_{6} \text{ 21 mbr})$	0.000	" Крадрати и соти	e e	120
	C_{60} (P 1.3 CH ₂ Cl ₂) C_{12} (Pip) + 0.7 CH ₂ Cl ₂ +0.2 E+ O	0.000	квадратные соты Ирадратица адон	0	120
	$C_{60}(\Gamma^{1}D)_{2}^{-0.7} C_{12}^{-0.7} C_{12}^{-0.5} El_{2}^{-0.5} C_{12}^{-0.5} El_{2}^{-0.5} C_{12}^{-0.5} C_$	0.098	квадратные слои	4	150
	$C_{60}(UN)_2 \cdot 2(0 - C_6 H_4 Ul_2)$	0.084	пространственный куоический	0	295
ZUHSEA	$C_{60}C(C_6H_4OMe)_2$	0.038	квадратные слои	4	295
ZUSSUB	$C_{64}H_4COCP \cdot PhMe$	0.076	і офрированные гексагональные слои	6	156
BUBQIY	$(C_{60})_2(Mal)_{10} \cdot 4$ PhCl	0.075	Островной	1	103
NEPHAR	C_{60} Phd · 2 CS ₂	0.087	Искаженный «алмаз»	4	91

Код CSD (ссылка)	Формул ^а	<i>R</i> -фактор	Мотив	МКЧ	<i>T</i> , K
	<i>σ-Произе</i>	зодные			
UBIJAO	$C_{60}(Ant)_2 \cdot 1.5 CS_2 \cdot C_6H_{14}$	0.068	Цепочки	2	218
UBIJEU	$C_{60}(Ant)_2 \cdot 1.5 CS_2$	0.053	Двойные цепочки	3	218
VODZIX	$C_{60}(MalBr)F_{15} \cdot PhMe$	0.049	Островной	1	173
VOKFOO	$C_{60}(1-MeAnt) \cdot 2 CHCl_3$	0.067	Колонки	2	223
XARVAN	$C_{70}(DMal) \cdot 6 CHCl_3$	0.077	Иепочки	2	233
SERDUO	C_{70} Phe · PhMe	0.089	3D-Каркас	8	295
REFTOL	C_{70} TMOIz · 0.5 CS ₂	0.046	»	10	170
CELOUF	$C_{70}CC_{12} \cdot 0.45 C_{5}H_{12} \cdot 0.05 PhMe$	0.089	»	10 11	110
GIZCIB	$C_{70}(C_{4}H_{4}CF_{2})_{2}T]: \rho - C_{4}H_{4}CI_{2}$	0.085	Гексагональные спои	6	295
ZADOUO	$b-C_{70}$ Dmbdm : 2 CS ₂	0.045	3Д-Каркас	6	193
ZADRAX	$d - C_{70}$ Dmbdm : 2 CS ₂	0.049	Пространственный кубический	6	100
(49)	$C_{co}Me_{c}Ph_{c}O_{c}(OH)_{2}:PhCl$	0.1447	Гофрированный графит	_	173
(50)	$C_{60}(n-C_cH_4Me)_2$: CHCl ₂ : CS ₂	0.059	Колонки	2	100
(30)	π-Προυγε	ологи	KOJOIKH	2	100
	C Dd(Dh D)	0.004	Fadayaaaayyyyaayay	5	102
PACTUV	C_{60} Fd(Fli3F) ₂ C Dt(Db D)	0.094	т офрированные слои	5	205
RACIUN	$C_{60}Pt(Ph_3P)_2$	0.069	—	_	293
PECIAS	$C_{60}PI(PI_3P)_2 \cdot IHF$	0.039	 A		203
BEJKUW	C_{70} Pd(Pn ₃ P) ₂ ·CH ₂ Cl ₂	0.093	Алмазоподооный	4	130
GUDNUI	C_{60} Kn(Ph ₂ PCH ₂) ₃ CCH ₃	0.072		2 4	295
HAJYIA	C_{60} Kn(Pn ₃ P) ₂ (CO)H · 3.27 CH ₂ Cl ₂	0.072	ЗД-Каркас	2,4	123
KUKAUD	$C_{60}Ir(Pn_3P)_2(CO)CI \cdot 5C_6H_6$	0.067	Островнои	1	130
WIHFUU	$C_{60}OIr(Pn_3P)_2(CO)CI \cdot 0.53 CHCl_3 \cdot 4.4 / C_6H_6$	0.057	изолированныи	0	123
ZEKXAU	$C_{60}O_2 Ir(Pn_3P)_2 (CO)CI \cdot 4.8 C_6 H_6$	0.055	»	0	130
ZOQBUC	$C_{60}OIr(Ph_3As)_2(CO)CI \cdot 0.18 CHCl_3 \cdot 4.82 C_6H_6$	0.066	»	0	123
JOHGOC	$C_{70}Ir(Ph_3P)_2(CO)CI \cdot 2.5C_6H_6$	0.068	I рафитоподооныи	3	120
TUFTIX	$C_{70}OIr(Ph_3P)_2(CO)CI \cdot 5C_6H_6$	0.099	»	3	125
SUMZUV	C_{84} lr(Ph ₃ P) ₂ (CO)Cl·4C ₆ H ₆	0.036	Алмазоподобный	4	295
KUFHEY	C_{60} lr(podp) ₂ (CO)Cl	0.066	Цепочки	2	130
LIXTUH	C_{60} Ti Cp_2 ·PhMe	0.076	3D с каналами	6	120
MAZBIY	$C_{60}Mo(CO)_3(dppbz) \cdot 3 THF$	0.051	Графитоподобный	3	295
MAZBOE	$C_{60}W(CO)_3(dppbz) \cdot 3 THF$	0.068	»	3	295
NOWSOH	$C_{60}Mo(CO)_2(Phen)(bml) \cdot 2 C_6H_6 \cdot C_5H_{12}$	0.125	Цепочки	2	295
NOWSUN	$C_{60}W(CO)_2(Phen)(bml) \cdot 2 C_6H_6 \cdot C_5H_{12}$	0.087	»	2	295
SUXGAT	$C_{70}Mo(CO)_2(Phen) \cdot 2 Pr'OH \cdot 2.5 H_2O$	0.095	Искаженный «алмаз»	4	173
MINSAD	$(C_{60})_2$ W(CO) ₂ (BBPy) · C ₅ H ₁₂ · 3 CS ₂	0.085	Соты	5, 6	123
MINSEH	$(C_{60})_2$ Mo(CO) ₂ (BBPy) \cdot C ₅ H ₁₂ \cdot 4 CS ₂ \cdot H ₂ O	0.098	»	5, 6	123
POKMOR	$C_{60}Rh(DMPy)_2(acac) \cdot C_6H_6$	0.057	Алмазоподобный	4	295
POQJOU	$C_{60}W(dppe)(CO)_3 \cdot 2 (o - C_6H_4Cl_2) \cdot C_6H_{12}$	0.051	Островной	1	198
PUKWAT	$C_{60}Ru(PPh_3)_2(Cl)(NO) \cdot 5C_6H_6$	0.061	Изолированный	0	295
PUNDOR	$C_{60}Mo(dppe)(CO)_3 \cdot CS_2$	0.041	Цепочки	2	198
PUNDUX	$C_{70}Mo(dppe)(CO)_3 \cdot 3 CHCl_3$	0.082	Двойные цепочки	4	198
XAWHUY	$C_{60}Mn(CO)_4^-(Ph_3P)_2N^+ \cdot THF$	0.136	Гофрированные квадратные слои	4	173
TIBJAP	$C_{60}Pt(dodppb) \cdot C_8H_{14}$	0.065	Алмазоподобный	4	148
LADLAD	$C_{60}[Ir(PPhMe_2)_2(Cl)(CO)]_2 \cdot C_6H_6$	-	Изолированный	0	120
LADLEH	$C_{60}[Ir(PPhMe_2)_2(Cl)(CO)]_2 \cdot 2 C_6 H_6$	0.034	Колонки	2	123
XEHYOY	$(C_{60})_2 Ir_2(CO)_2 Cl_2(dpph)_2 \cdot 4 C_6 H_6 \cdot 2 CH_2 Cl_2$	0.053	Цепочки	2	130
YEMVOB	$(\eta^2, \eta^2 - C_{60})[Ir(PMe_3)_2(Cl)(CO)]_2 \cdot 2C_6H_6$	0.065	Изолированный	0	123
YEMVUH	$(\eta^2, \eta^2 - C_{60})[Ir(PEt_3)_2(Cl)(CO)]_2 \cdot C_6H_6$	0.073	Колонки	2	123
PUHXUL	(η^2, η^2-C_{60}) Ir ₂ (MeO)(PhO)(C ₈ H ₁₂) ₂ ·CH ₂ Cl ₂	0.110	Квадратные слои	4	295
PUKWEX	$(\eta^2, \eta^2 - C_{60}) \text{Re}_2(\text{PMe}_3)_4 \cdot 1.5 C_6 H_6$	0.034	Графитоподобный	3	295
VURTEH	$(\eta^2, \eta^2 - C_{70})[Ir(PPhMe_2)_2(Cl)(CO)]_2 \cdot 3C_6H_6$	0.051	Цепочки	2	130
ZISJOA	$(n^2, n^2-C_{60})Ru_2(Me_5Cp)_2(H)(Cl) \cdot PhMe$	0.040	Графитоподобный	3	295
ZISJUG	$(n^2, n^2-C_{60})Ru_2(Me_5Cp)_2(Cl)_2 \cdot 2PhMe$	0.045	»	3	295
TOPNER	$(n^2, n^2, n^2 - C_{60})$ Ru ₃ (CO) ₉ ·CS ₂	0.076	Лвойные гексагональные слои	7	295
NAXNII	$(h h d - n^2 n^2 n^2 - C_{70}) Ru_2(CO)_0 \cdot CS_2$	0.086	ЗД с каналами	, 8	198
PUKBIG	$(n^2 - C_{c0}) O_{s2}(CO)_{11} \cdot CH_2 Cl_2$	0.000	Алмазополобичий	⊿	205
ORINIW	$(n^2 n^2 n^2 - C_{co}) O_{co} (CO)_{co} (BIC) \cdot 0.25 CS$	0.004		+ 1456	293
OBINOC	$(\pi, \pi, \pi$	0.009	гофрированные гексагональные сло	2 2 2 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2 1 2	273
	$(\sigma, \eta, 0, -C_{60}) \cup S_3(CO)_8(DIC)_2 \cap S_2$	0.040	т офрированный графит То жо	2 2	293
UBINUI	$(0, \eta^{-}, \sigma^{-} C_{60}) OS_3(CO)_8(BIC)_2$	0.078		3	293
HISVAG	$(\eta^{2}, \eta^{2}, \eta^{2} - C_{60})Os_{3}(PPh_{3})(CO)_{8} \cdot 1.5 CS_{2}$	0.063	г офрированные квадратные слои	4	295
MAZLUU	$(\eta^2, \eta^2, \eta^2 - C_{60})Os_3(PMe_3)_2(CO)_7 \cdot CS_2$	0.065	I ексагональные слои	6	295

Таблица 2 (окончание).

Код CSD (ссылка)	Формула ^а	<i>R</i> -фактор	Мотив	мкч	<i>T</i> , K
	π-Произво	одные			
MAZMAB	$(\eta^2, \eta^2, \eta^2 - C_{60})Os_3(PMe_3)_3(CO)_6 \cdot 2CH_2Cl_2$	0.065	Графитоподобный	3	295
AFOXEY	$(\eta^2, \eta^2, \eta^2-C_{60})Os_3(BIC)_2(PPh_3)(CO)_7 \cdot o - C_6H_4Cl_2$	0.041	Цепочки	2	298
AFOXIC	$(\eta^2, \eta^2 - C_{60})Os_3(PPh_3)(PPh_2)(C_{12}H_{13}N_2)(CO)_6$	0.065	»	2	233
AFOXOI	$(\sigma, \eta^2, \sigma$ -C ₆₀)Os ₃ (BIC) ₂ (PMe ₃)(CO) ₇ ·CS ₂	0.076	Квадратные слои	4	233
MOCPID	$(\eta^2, \eta^2, \eta^2 - C_{60})Re_3(BIC)(CO)_8 \cdot CS_2$	0.053	Искаженный «алмаз»	4	233
MOHYEN	$(\sigma, \eta^2, \sigma$ -C ₆₀)Os ₃ (BIC)(CO) ₉ · 0.5 CS ₂	0.082	Гофрированные слои	5,6	233
YAPXOC	$C_{60}[Ir_2Cl_2(C_8H_{12})_2]_2 \cdot 2C_6H_6$	0.032	Колонки	2	295
ZOHVOH	$C_{70}[Pt(Ph_3P)_2]_4 \cdot 6.5 C_6H_6 \cdot 0.5 CH_3OH$	0.074	Изолированный	0	130
MEKXOP	$(\eta^2, \eta^2 - C_{60})Os_5C(CO)_{12}Ph_3P$	0.061	Двойные цепочки	4	295
MEKYAC	$(\eta^2, \eta^2 - C_{60})Os_5C(CO)_{11}Ph_3P \cdot CS_2 \cdot 0.5 H_2O$	0.120	Гофрированные слои	5	295
MEKXUV	$(\eta^2, \eta^2, \eta^2 - C_{60})Os_5C(BIC)Ph_3P(CO)_{11} \cdot 0.5CS_2$	0.140	Двойные цепочки	4	295
MEKYEG	$(\eta^2, \eta^2, \eta^2 - C_{60})Os_5C(BIC)(Ph_3P)(CO)_{11}$	0.074	То же	4	295
NOGNUS	$(\eta^2, \eta^2, \eta^2 - C_{60}) Ru_5 C(CO)_{11} Ph_3 P \cdot 1.5 CS_2$	0.069	Гофрированные слои	5	198
GAQCEG	$(\eta^2, \eta^2, \eta^2 - C_{60}) Ru_5 C(CO)_{10}(dppm) \cdot CH_2 Cl_2$	0.131	Графитоподобный	3	198
GAQCIK	$(\eta^2, \eta^2, \eta^2 - C_{60})$ Ru ₅ C(CO) ₁₀ (dppfc) · CH ₂ Cl ₂	0.102	Цепочки	2	198
MIDMIV	$(\eta^2, \eta^2, \eta^2 - C_{60}) Ru_5 C(PPh_3) (BIC) (CO)_{10} \cdot 2 CS_2$	0.058	»	2	233
NOGPAA	$(\eta^2, \eta^2, \eta^2 - C_{60}) Ru_6(CO)_{12}(dppm) \cdot 3 CS_2$	0.085	»	2	295
NAXNOP	$C_{70}[Ru_3(CO)_9]_2 \cdot 1.5 CS_2$	0.085	Гофрированные слои	5	198
GAQCUW	$(\eta^2, \eta^2, \eta^2 - C_{60}) PtRu_5C(CO)_{11}(dppm) \cdot 2 CS_2$	0.044	Островной	1	198
XIJQEM	$(\eta^2, \eta^2, \eta^2 - C_{60})Rh_6(dppm)_2(CO)_9$	0.104	Островной	1	293
XIJQIQ	$(\eta^2, \eta^2, \eta^2 - C_{60})_2 Rh_6(dppm)_2(BIC)(CO)_5$.	0.085	Гофрированные слои	3	293
	$\cdot 1.5 (o - C_6 H_4 C l_2) \cdot 2.75 C S_2$				
KOLSOT	$C_{60}[Pt(Ph_3P)_2]_6$	0.033	Изолированный	0	203
(51)	η^2 -C ₆₀ Ir(Cbpp)(Bu ^t NC) ₂ ·4 PhMe	0.0446	Цепочки	2	190
(51)	σ -C ₆₀ IrO ₂ (Cbpp)(Bu ^t NC) ₂ ·3.67 CHCl ₃	0.0649	Ажурные слои	3	100
	Эндоэдральные металлофул	лерены и их произ	водные		
BOJNIX	$Sc_3N@C_{80}$ · CoOEP · 1.5 CHCl ₃ · 0.5 C ₆ H ₆	0.224	Шепочки	2	130
BEZCUE	$\operatorname{ErSc_2N}(@C_{80} \cdot \operatorname{CoOEP} \cdot 0.3 \operatorname{CHCl_3} \cdot 1.5 \operatorname{C_6H_6})$	0.087	»	2	90
OOFZIU	$Sc_3N@C_{78} \cdot CoOEP \cdot 0.3 CHCl_3 \cdot 1.5 C_6H_6$	0.111	»	2	110
XILSUG	$Sc_3N@C_{80}Dmbdm \cdot 2C_6H_6$	0.064	Гофрированные гексагональные слои	5	91
XIMKOT	$Er_2(a)C_{82} \cdot CoOEP \cdot 1.4 C_6H_6 \cdot 0.3 CHCl_3$	0.148	Цепочки	2	113
(16)	$Sc_3N@C_{68} \cdot NiOEP \cdot 2C_6H_6$	0.0935	Изолированный	0	91
(52)	$Eu_{3-x}C_{70}$	См. ^с	ГЦК	12	298
(52)	$Eu_{9-x}C_{70}$	См. ^с	»	12	298

^а Сокращенные названия молекул и лигандов, входящих в состав производных фуллеренов, расшифрованы в табл. 3. ^ь Нет данных ввиду существенной неспецифичности углеродного каркаса. ^с Исследование методом порошковой дифракции.

Таблица 3. Молекулы и лиганды, входящие в состав производных фуллеренов.

Сокращение	Формула	Полное название
		Нейтральные молекулы и лиганды
acac	$C_5H_7O_2$	Ацетилацетонат
AT	$C_{19}H_{13}N$	Азатриптицен
BBPy	$C_{20}H_{24}N_2O_4$	4,4'-Бис(н-бутоксикарбонил)-2,2'-бипиридил
BDMT-TTeF	$C_{14}H_{12}S_2Te_4$	Бис(диметилтиено)тетрателлурафульвален
BEDTB(EDT)	$C_{20}H_{16}S_{16}$	Бис(этилендитио)бис(этилендитиотетратиафульвален)
BEDT-TTF	$C_{10}H_8S_8$	Бис(этилендитио)тетратиафульвален
bml	$C_{12}H_{20}O_4$	Ди-н-бутилмалеат
BIC	C_8H_7N	Бензоилазацианид
BNDTY	$C_{22}H_{12}S_4$	Би(нафто[1,8- <i>d</i> , <i>e</i>]-1,3-дитиин-2-илиден)
BNTTF	$C_{22}H_{16}S_4$	Бинафтотетратиафульвален
BPZnOEP	$C_{108}H_{124}N_8O_4Zn_2\\$	µ ₂ -5,5':15,15'-Бис[1,6-бис(<i>м</i> -фениленокси)гексан]бис(2,3,7,8,12,13,17,18-октаэтил-
BTX	CaeHusTea	99'- <i>транс</i> -Битеплураксантения
Calix[6]	C42H36O6	Каликсібіарен
CCTV	$C_{27}H_{30}O_{6}$	Катенациклотривератрилен
Crown	$C_{12}H_{24}O_{6}$	18-Краун-6
Crypt	$C_{18}H_{36}N_2O_6$	2.2.2-Криптанл
CTV	C ₂₇ H ₂₇ O ₆	Циклотривератрилен

Сокращение	Формула	Полное название
		Нейтральные молекулы и лиганды
DAN	$C_{28}H_{20}$	9,10-[9,10]Антраценоантрацен
DBTTF	$C_{14}H_8S_4$	Дибензотетратиафульвален
DIDMCalix[5]	$C_{38}H_{34}I_2O_5$	3,16-Дииод-10,22,28-триметилкаликс[5]арен
Diox	$C_4H_8O_2$	Диоксан
DMPy	C7H9N	3,5-Диметилпиридин
DMTEDT-TTF	$C_{10}H_{10}S_8$	Ди(метил)тиоэтилендитиотетратиафульвален
dodppb	$C_{31}H_{32}O_2P_2$	0,0'-Изопропилиден-2,3-дигидрокси-1,4-бис(дифенилфосфино)бутан
dppbz	$C_{30}H_{24}P_2$	Бис(дифенилфосфино)бензол
dppe	$C_{26}H_{24}P_2$	Бис(дифенилфосфино)этан
dppfc	$C_{34}H_{28}P_2Fe$	Бис(дифенилфосфино)ферроцен
dpph	$C_{31}H_{34}P_2$	Бис(дифенилфосфино)гептан
dppm	$C_{25}H_{22}P_2$	Бис(дифенилфосфино)метан
DTDSeF	$C_8H_8S_3Se_2$	2-(4-Тиоксо-1,3-дитиолан-5-илиден)-4,5-диметил-1,3-диселенол
EDT(DET)TTF	$C_{12}H_{14}S_8$	Этилендитио(диэтилтио)тетратиафульвален
TBBCN	$C_{63}H_{42}O_{12}$	Трис(4,5-дибензоилоксибензо)[<i>a,d,g</i>]циклононан
HMTPH	$C_{24}H_{24}O_6$	Гексаметокситрифенилен
HMTTF	$C_{12}H_{12}S_4$	Гексаметилентетратиафульвален
MDT-TTF	$C_8H_4S_8$	Метилендитиотетратиафульвален
ODAPz	$C_{32}H_{48}N_{16}$	Октакис(диметиламино)порфиразин
OEP	$C_{36}H_{40}N_4$	Октаэтилпорфирин
OMCTD	$C_{26}H_{30}N_4$	5,14-Дигидро-2,3,6,8,11,12,15,17-октаметилдибензотетрааза(14)аннулен
OPCTSil	$C_{48}H_{40}O_4Si_4$	Октафенилциклотетрасилоксан
PBMP	$C_{17}H_{14}N_2O_2$	4-Бензоил-3-метил-1-фенилпиразол-5-он
PPheCalix[5]	$C_{70}H_{60}O_5$	Каликс[5]арен
PBiOCalix[5]	$C_{70}H_{58}O_{10}$	Бикаликс[5]арен
PdBPPyP	$C_{134}H_{150}N_{10}Pd_{3}Cl_{2} \\$	Бис[µ2-5-(3-пиридил)-10,15,20-три(3,5-дибутилфенил)порфирин]дихлоротрипалладий
Calix[5]	$C_{35}H_{30}O_5$	Каликс[5]арен
Phen	$C_{12}N_2H_8$	1,10-Фенантролин
PMPHCalix[5]	$C_{40}H_{40}O_5$	5,11,17,23,29-Пентаметил-31,32,33,34,35-пентагидроксикаликс[5]арен
podp	$C_{26}H_{23}OP$	4-Бензилоксибензилдифенилфосфин
Ру	C_5H_5N	Пиридин
TAP	$C_{92}H_{76}N_2$	Тетракис(2,3,6,7-тетраметил-9,10-дигидро[9,10]антрацен)порфирин
TBPD	$C_{34}H_{32}N_4$	Тетрабензил- <i>пара</i> -фенилендиамин
TBrCalix[3]	$C_{24}H_{21}Br_3O_6$	Трибромтрис(оксадигомо)каликс[3]арен
TBTHCalix[3]	$C_{45}H_{42}O_6$	7,15,23-Трибензилтрисоксадигомокаликс[3]арен
TBTNCalix[3]	$C_{48}H_{54}O_6$	8,18,28-Трибутилтрис(оксадигомо)каликс[3]нафталин
TBTPCalix[4]	$C_{40}H_{44}Br_4O_4$	5,11,17,23-Тетрабром-25,26,27,28-тетра- <i>О-н</i> -пропилкаликс[4]арен
TBuCalix[3]	$C_{36}H_{48}O_6$	Три-трет-бутилгексагомооксакаликс[3]арен
TDAE	$C_{10}H_{24}N_4$	Гетракис(диметиламино)этилен
TDMPP	$C_{76}H_{94}N_4$	5,10,15,20-тетракис(3,5-ди- <i>трет</i> -оутилфенил)порфирин
TDMPP	$C_{52}H_{44}N_4$	1 етракис(диметилфенил)порфирин
	$C_4 N_4 S_6$	3, 3, 4, 4 - 1 етратиаоис(1, 2, 5-тиадиазол) Талиалист в филом
	C_4H_8O	гетрагидрофуран 5.11.17.22 Тотронод 25.26.27.28 дотра Обсионало дино[4]орон
TH DCallx[4]	$C_{56}H_{44}H_{4}O_{4}$	5,11,17,25-тетраиод-25,20,27,26-тетра-о-оензилкаликс[4]арен
TMCTD TMDTDM TTE	$C_{22}\Pi_{22}\Pi_4$	5,7,12,14-1 страметилдиоснзотетрааза(14)аннулсн
	$C_{12}\Pi_{14}S_{6}$	Тетраметилендитиоди(метилтио)тетратиафульвален
	C_{611454}	N N N' N' Тетрометиц и фенциенциомин
TMCalix[5]	$C_{10}H_{16}N_2$	5.17.23 Trumerture auto[5]apau
TMTSeF	CusHusSer	5,17,25-1 римстилкалике[5]арон Тетраметинтетраселенафуни ранен
TMTTF	$C_{10}H_{12}S_{2}$	Тетра(метилтио)тетратиафульвален
TPRP	$C_{24}H_{24}O_{2}$	2 2' 6 6'-Тетрафениллипиранилилен
TPivP	CeaHeeNoO4	2,2,3,5,6 тографонизданиранизиден Тетракис(а-пиваламило)фенилпорфирин
TPCalix[4]R	$C_{40}H_{40}O_{8}$	Тетра(фенетил)каликс[4]пезорлинарен
ТРР	C44H20N4	Тетрафенилпорфирин
TPvP	C40H20N0	Тетракис(4-пирилил)порфирин
Trip	C20H14	Триптипен
TTolP	$C_{48}H_{36}N_4$	Тетра(<i>n</i> -толил)порфирин

Таблица 3 (окончание).

Сокращение	Формула	Полное название					
	Заместители						
Ant	$C_{14}H_8$	Антрацен-9,10-диил					
Bqd	$C_8H_6O_2$	1,4-Бензохинон-2,3-диилдиметилен					
Phe	C_6H_4	о-Фенилен					
Cbpp	$C_{15}B_{10}H_{22}P$	(Дифенилфосфинометилен)карборанил					
CCpdm	C ₃₅ H ₂₇ Co	(1,2,3,4-Тетрафенилциклобутадиен)кобальтциклопентадиенилдиметилендиил					
CHE	C_6H_8	Циклогекс-2-ен-1,4-диил					
DMal	C ₃₂ H ₃₆ O ₁₄	Дибензо-18-краун-6-3,3'-диил-бис[метоксикарбонил(этоксикарбонил)метилен]					
Dmbd	$C_8H_8O_2$	4,5-Диметоксифенилен					
Dmbdm	$C_{10}H_{12}O_2$	Диметоксиксилилен					
Dpbdm	$C_{22}H_{20}$	1,4-Диметил-2,9-дифенилфенилендиметилдиил					
Dtdm	$C_5H_4S_3$	1,3-Дитиол-2-тион-4,5-диметилендиил					
Epp	$C_6H_8O_2$	1-Этоксикарбонил-1,2-пропендиил					
Fl	C13H9	9-Флуоренил					
Hex	$C_{32}H_{38}O_2$	Диметокси-7,14-диметил-7,14-цикло-6,15:8,13-диметано-5,16-этаногексагидро-					
		гексацендиил					
Mal	$C_7H_{10}O_4$	Диэтилмалонатдиил					
Mbde	$C_{19}H_{30}O_4$	Бис[4-гексил(диил)бензил]малонатдиил					
Mcbcd	$C_{13}H_{18}O_2$	7-Бутоксикарбонил-3-метилбицикло[4.1.0]гептан-2,5-диил					
Мрс	C ₉ H ₇ NO ₄	(4-Метоксикарбонилфенил)карбамат- <i>N</i> , <i>N</i> -диил					
Mpd	C ₉ H ₉ NO	2-(5-Метоксифенил)-2-азапропан-1,3-диил					
Рср	$C_{20}H_{16}O_2P$	1-(Трифенилфосфонио)ацетилид					
Phd	$C_{20}H_{19}N_5$	6-Фенил-1,4-бис(2-пиридил)-2,3,5-триазагепта-1,4-диен-1,3-диил					
Рро	$C_8H_{12}O_2$	8,8-Диметил-6,10-дикарбопиро[4,5]декан-1,2-диил					
PPZnTPP	$C_{52}H_{38}N_6Zn$	1-(4-Пиридилцинктетрафенилпорфиринат)-2-метил-2-азапропан-1,3-диил					
Pip	$C_4H_8N_2$	Пиперазин-1,4-диил					
Tmopp	$C_{12}H_{15}O_5$	(3,4,5-Триметоксифенил)пропионат-3-диил					
XMal	$C_{18}H_{18}O_8$	о-Фениленбис[метоксикарбонил(этоксикарбонил)метилен]					
		Аннелированные гетероциклы					
C ₆₀ AIz	C ₇₅ H ₉ NO	3-(9-Антрил)-4,5-дигидроизоксазолофуллерен					
C ₆₀ BCIz	C ₆₉ H ₇ NO ₃	3-Бензилоксикарбонилизоксазолофуллерен					
C ₆₀ SPPIz	C ₇₁ H ₁₃ NO ₃ S	3-[о-(трет-Бутилсульфонил)фенил]изоксазолофуллерен					
C ₆₀ TMOIz	C ₇₀ H ₁₁ NO ₄	3-(2,4,6-Триметоксифенил)изоксазолофуллерен					
$C_{60}(Tmp)_6$	C ₃₀ H ₇₈ N ₆	Гексакис(2,2,5,5-тетраметилпирролидино)фуллерен					
C ₆₀ TPPPyr	$C_{107}H_{35}N_5$	1-Метил-2-(тетрафенилпорфирин)-3,4-пирролидинофуллерен					
C ₆₀ Trz	$C_{64}H_9N_3O_2$	1-(2-Метоксиэтоксиметил)триазолофуллерен					

Рис. 4. Схема кристаллического строения ГЦК-фазы $C_{60}(a)$ и ромбоэдрической фазы $C_{70}(b)$.

IV. Молекулярные комплексы

Обширный класс производных фуллерена составляют молекулярные комплексы с неполярными молекулами. В литературе их также называют смешанными или ван-дерваальсовыми кристаллами. Как было впервые показано А.И.Китайгородским,⁶⁴ в кристаллах, удерживаемых только ван-дер-ваальсовыми силами, наиболее энергетически выгодная упаковка молекул обычно совпадает с наиболее плотной. При упаковке крупных сфероидальных молекул C_n имеются пустоты значительного размера, поэтому фуллерены легко образуют молекулярные комплексы (клатраты, соединения включения) со многими молекулами-«гостями». Структура и свойства таких соединений рассмотрены в обзорах ^{2,3,6}. Многие кристаллохимические закономерности, наблюдаемые в данном классе веществ, распространяются на производные фуллеренов.

Пустоты исходной плотнейшей упаковки фуллереновых «сфер» способны вместить лишь отдельные атомы, например атомы щелочного металла (см. ниже). В подавляющем большинстве кристаллических молекулярных комплексов фуллеренов присутствуют менее плотные структурные мотивы из кластеров C_n , возникшие в результате внедрения более крупных молекул или ионов. Такие мотивы характеризуются «парциальным» молекулярным координационным числом, т.е. числом соседних кластеров, образующих с данным кластером ван-дер-ваальсовы контакты С···С длиной 3.2-3.5 Å. В случае производных C_{60} такие контакты эквивалентны расстояниям 9.9–10.3 Å между центрами соседних молекул. Полуколичественной характеристикой плотности кладки молекул фуллерена может служить параметр разбавления ⁶⁵

$$\rho = \frac{V_{\text{cell}} - V_{\text{full}}}{V_{\text{full}}},\tag{1}$$

где V_{cell} — объем элементарной ячейки, а V_{full} — объем, занимаемый в ней молекулами фуллерена. Параметр разбавления ρ , принимающий значения от 0.33 (ГЦК) до ∞ , связан с обычным парциальным коэффициентом упаковки фуллереновых сфер в кристалле

$$\kappa = \frac{V_{\text{full}}}{V_{\text{cell}}}$$

простым соотношением

$$\frac{1}{\kappa} = \rho + 1$$

Увеличение ρ , отвечающее последовательному «разбавлению» фуллереновых остовов прочими (нефуллереновыми) молекулярными фрагментами в кристалле, обычно сопровождается сменой мотивов расположения углеродных кластеров (C_n) $_{\infty}$ при достижении определенных пороговых значений ρ . Для производных C_{60} области значений ρ , характерные для различных мотивов, легко оценить из геометрических соображений.⁶⁵

Поскольку молекулы в данном типе соединений удерживаются вместе за счет неспецифических ван-дер-ваальсовых взаимодействий, многие молекулы-«гости», близкие по размерам и форме ван-дер-ваальсовой поверхности, в комплексах с фуллеренами образуют подобные структурные мотивы с близкими значениями параметра ρ . При этом кристаллы комплексов могут относиться к различным сингониям и сильно различаться по параметрам элементарных ячеек. Мотив (C_n)_∞ в таких структурах играет роль лабильной вандер-ваальсовой матрицы, позволяя их классифицировать по значениям МКЧ и ρ .

В качестве «гостей» в структурах молекулярных комплексов C_n часто выступают молекулы растворителя. При выращивании кристаллов фуллеренов из растворов в большинстве случаев образуются кристаллосольваты. Некоторые растворители способны образовывать с фуллереном несколько сольватов различного состава. Например, в случае CCl₄ формируются сольваты 1:2 (см.⁶⁶) и 1:13 (см.⁶⁷), аналогично ведет себя CBrCl₃ (см.⁶⁸).

Бакминстерфуллерен относительно хорошо растворяется в ароматических углеводородах и их неполярных производных, но практически не растворяется в полярных жидкостях (спиртах, эфирах и др.).⁶⁹ Плохими растворителями C₆₀ являются алифатические углеводороды, которые, однако, также образуют с ним сольваты. На кривой растворимости

Рис. 5. Основные мотивы упаковок в молекулярных кристаллах производных C_{60} .

Мотив: a — «почти плотный», b — двойные слои, c — плотные слои, d — каркас, e — разделенные плотные слои, f — разреженные слои, g — колоночный, h — островной; примеры структур см. в табл. 4; l — фуллк = урен, 2 — молекула растворителя, 3 — молекула-«гость».

для многих растворителей обнаружен характерный излом, иногда являющийся максимумом. Этот эффект получил название «аномальной температурной зависимости», 69 хотя аналогичное изменение растворимости наблюдается в ряде неорганических систем, например в системе $Na_2SO_4 - H_2O^{.70}$ Данную особенность С₆₀ первоначально связывали с фазовым переходом в чистом фуллерене⁶⁹ или с образованием многомолекулярных кластеров в растворе.⁷¹ Однако в настоящее время считается, что она обусловлена образованием сольватов, ⁷² которые при определенной температуре T^* (для ароматических растворителей, как правило, ниже точки кипения) претерпевают инконгруэнтное плавление, т.е. разлагаются на фуллерен и растворитель. Результаты калориметрических исследований ряда систем фуллерен – растворитель показали, что энтальпия неконгруэнтного плавления составляет обычно 10-50 кДж на 1 моль фуллерена.73,74 Свойства растворов высших фуллеренов в общем аналогичны свойствам раствора С₆₀, но растворимость, например С70 в органических средах обычно немного выше, чем у бакминстерфуллерена.75

Основные мотивы из химически не связанных фуллереновых сфер (C_n)_∞, встречающиеся в структурно исследованных молекулярных комплексах фуллеренов, перечислены в табл. 4. Для всех структур приведены значения МКЧ молекулы фуллерена. Мотивы упаковки фуллерен–«гость» схематично изображены на рис. 5.

Кладка $(C_n)_{\infty}$, наименее разбавленная молекулами гостя, встречается в сольвате C_{60} с *м*-ксилолом,⁷⁶ мезитиленом,⁸³ а также с другими небольшими молекулами 1,3- и 1,3,5-заме-

Таблица 4. Структурные мотивы из молекул фуллеренов в их молекулярных комплексах.

Тип	МКЧ	Пример	Ссылки
«Почти плотные» трехмерные каркасы	9-11	$C_{60} \cdot \frac{2}{3} C_8 H_{10}, C_{60} \cdot C_5 H_{12}$	76, 77
Двойные слои	7 - 10	$C_{60}Mpc \cdot 0.5 C_6H_6$	78
Гексагональные слои с тригонально-призматическими пустотами между слоями	6 - 8	$C_{60} \cdot 2 P_4$	79
Ажурные трехмерные упаковки (трехмерные соты с каналами или алмазоподобные каркасы)	4-6	$C_{60} \cdot 4 C_6 H_6$	80
Пространственно-разделенные плотные слои	4 - 6	$C_{70} \cdot 6 S_8$	26
Разреженные слои, в том числе графитоподобные	3 - 6	$C_{60} \cdot Pd(OEP) \cdot 1.5 C_6 H_6$	81
Колоночные мотивы	2 - 4	$C_{70} \cdot Co(OEP) \cdot CHCl_3 \cdot C_6H_6$	82
Островные мотивы	0 - 1	$C_n \cdot 13 C_6 H_{12} (n = 60, 70)$	67

Рис. 6. Упаковка молекул в структурном мотиве сольвата 1:1 фуллерена с пентаном.

I — молекулы С₆₀, *2* — молекулы растворителя; прямоугольником выделена проекция элементарной ячейки.⁷⁷

щенных бензолов (А). Такие сольваты имеют состав $3C_{60} \cdot 2$ A и содержат ГПУ-мотив из фуллереновых сфер с «вырезанными» колонками (МКЧ = 9–10); молекулы растворителя размещены в каналах (см. рис. 5,*a*).

Среди трехмерных плотных каркасов фуллерена часто встречается структурный мотив, характерный для серии сольватов С₆₀ состава 1:1 с пентаном, гексаном, дихлорэтаном, трихлорэтаном и трихлорэтиленом. Тетрагональные плотные слои (C₆₀)_∞ в таком структурном мотиве наложены друг на друга, при этом имеет место чередование плотнейшего и плотного способов наложения; молекулы растворителя размещены в пустотах (рис. 6). Для всех этих сольватов отмечено образование характерных полисинтетических двойников с приближенной осевой симметрией 10-го порядка.⁸⁴ Более крупные молекулы фуллеренов C₈₂ и M@C₈₂ образуют сольват такого же структурного типа с толуолом.^{31,85} Известен также плотный каркасный сольват C₆₀ с бромоформом состава 1:1 с разупорядоченными молекулами бромоформа в пустотах.⁴⁰

Бакминстерфуллерен образует большую серию сольватов и молекулярных комплексов состава 1:2 ($C_{60} \cdot 2A$, где $A = P_{4}$,⁷⁹ CCl₄,⁶⁶ PhBr,⁸⁶ Cp₂Fe (см.⁸⁷) и др.) с плотными гексагональными слоями из молекул фуллерена и с молекулами «гостя» А в межслоевом пространстве (см. рис. 5, с). Такой мотив со значениями MKH = 6-8 и $\rho = 0.7-0.8$ наблюдается в кристаллических структурах с сингонией от гексагональной $(C_{60} \cdot 2 P_4)$ до триклинной $(C_{60} \cdot 2 Cp_2 Fe)$. В бензольном сольвате нитрида серы переменного состава $C_{60} \cdot 0.67 \, S_4 N_4 \cdot 1.33 \, C_6 H_6$ половина позиций «гостя» занята упорядоченными молекулами бензола, а вторая половина разупорядоченными молекулами C₆H₆ и S₄N₄.⁸⁸ Интересно, что в сольватах состава 1:2 с бромбензолом и иодбензолом, имеющих аналогичное расположение молекул и отличающийся в 2 раза объем элементарной ячейки, молекула С₆₀ ротационно разупорядочена в бромбензольном сольвате и упорядочена в иодбензольном, причем расстояния между центрами соседних молекул С₆₀ в таких сольватах равны 10.16 и 9.89 Å соответственно.⁴¹

Ряд «плотных» молекулярных комплексов может быть получен путем интеркалирования малых молекул в твердый фуллерен под давлением. Так, в работе⁸⁹ методом ЯМР зафиксировано вхождение молекул кислорода в октаэдрические полости ГЦК-упаковки фуллерена при комнатной температуре под давлением 1 кбар. Основной путь получения молекулярных комплексов — сокристаллизация компонентов из подходящего растворителя. С тетраэдрическими молекулами Р₄ из раствора белого фосфора бакминстерфуллерен образует комплекс $C_{60} \cdot 2 P_4$ ($\rho = 0.82$) с плотными гексагональными слоями молекул C_{60} , а с более крупными молекулами серы — комплекс $C_{60} \cdot 2 S_8$ ($\rho = 1.08$),⁹⁰ содержащий трехмерный фуллереновый каркас с каналами. В то же

время С₇₀ образует с серой комплекс состава 1 : 6 ($\rho = 2.13$),²⁶ в котором слои из молекул С₇₀ разделены слоями молекул серы (см. рис. 5,*e*). Последний структурный мотив обнаружен также в С₇₆ · 6 S₈ (см.²⁷). Во всех комплексах с серой имеются короткие контакты С····S длиной 3.20–3.50 Å, стабилизирующие кристалл.

Разреженные слои $(C_{60})_{\infty}$ (приближенные к квадратным с МКЧ = 4) формируются при внедрении относительно небольших молекул растворителя (C₆H₆, CS₂) из слоя «гостя» в слой фуллерена. Структуры данного типа встречаются, например, в молекулярном комплексе бакминстерфуллерена тетраметилтетраселенфульваленом с состава C_{60} · TMTSeF · 2 (CS₂)⁹¹ и в комплексе с диантраценом состава C₆₀ · DAN · 3 C₆H₆, имеющем похожий структурный мотив.⁹² Устойчивость последнего комплекса настолько велика, что позволяет выделить бакминстерфуллерен из бензольного раствора смеси С₆₀ и С₇₀. Графитоподобный слой с МКЧ = 3 реализуется в соединении $C_{60} \cdot PdOEP \cdot$ $\cdot\,1.5\,C_{6}H_{6},^{81}$ а также в бензольном сольвате $2\,C_{60}\cdot$ \cdot H₂TPP \cdot 3 C₆H₆.⁹³ Следует отметить, что близкий по составу сольват молекулярного комплекса фуллерен-тетрафенилпорфирин 2 C₆₀ · H₂TPP · 4 C₆H₆ имеет совершенно иной тип упаковки молекул, включающий трехмерный каркас С₆₀ с гексагональными каналами.

Примером колоночных мотивов может служить комплекс $C_{60} \cdot 2$ (CuTPP),⁹³ содержащий линейные цепочки (C_{60}) $_{\infty}$ с MKЧ = 2. В некоторых структурах наблюдаются более сложные одномерные мотивы, такие как зигзагообразные цепочки (например, $C_{60} \cdot CCTV$ (см.⁹⁴)) или сдвоенные колонки фуллереновых молекул с MKЧ = 4 (например, $C_{60} \cdot 2$ BEDT – TTF (см.⁹⁵)).

Островные упаковки образуются в комплексах с преобладанием нефуллереновой компоненты, которая изолирует молекулы фуллерена друг от друга. В кристаллах комплексов взаимодействия молекул фуллерена друг с другом не являются главным фактором, определяющим структуру. Примерами таких соединений являются кубические сольваты состава C_{60} ·13 (Solv), образуемые фуллереном с циклогексаном, CCl₄ (см.⁶⁷) и CBrCl₃ (см.⁶⁸). В некоторых случаях островные мотивы состоят из двух фуллереновых остовов («ван-дер-ваальсовых димеров») C_{60} , отвечающих MKЧ = 1 (например, $2 C_{70} \cdot 9 [p-C_6H_4(OH)_2] \cdot 2 C_6H_6$ (см.⁹⁶)).

Фуллерен способен образовывать комплексы с неорганическими соединениями. В случае молекулярных неорганических «гостей» такие комплексы имеют обычную ван-дерваальсову природу. В качестве примера можно привести $C_{60} \cdot 3 \operatorname{TiCl}_4$, в котором присутствует алмазоподобный каркасный мотив,⁹⁷ и $C_{60} \cdot 3 C_6 H_6 \cdot 2 \operatorname{Pd}_6 \operatorname{Cl}_{12}$ с колонками из ротационно разупорядоченных молекул фуллерена.⁹⁸ Существуют также соединения, в которых нейтральная молекула фуллерена присутствует наряду с компонентами ионных солей, например $C_{60} \cdot 5 (\operatorname{Ag}^+ \operatorname{NO}_3^-)$ с деформированной простой кубической кладкой фуллереновых сфер.⁹⁹

Среди больших донорных молекул, образующих молекулярные комплексы с фуллеренами, следует отметить молекулы производных тетрахалькогенфульваленов, полиарильных и конденсированных ароматических углеводородов, макроциклических тетраазасоединений и их комплексов с металлами, а также большие каркасные молекулы (каликсарены, циклодекстрины) с полостью, подходящей по размерам к фуллереновой сфере. В случае несовпадения размеров полости и «гостя» в соединениях последнего типа уменьшается плотность упаковки и усиливается разупорядоченность, что дополнительно снижает точность определения структуры.

Замещенные производные тетратиафульвалена часто применяют в качестве катионных компонентов ион-радикальных солей, анионами в которых служат ароматические

Рис. 7. Взаимное расположение молекул бис(этилендитио)тетратиафульвалена (BEDT-TTF) и фуллерена в комплексе $C_{60} \cdot 2$ BEDT-TTF.⁹⁵

молекулы с сильными электрофильными заместителями. Плоская геометрия катиона и аниона позволяет им укладываться в стопки, связанные стэкинг-взаимодействием. Однако РСА молекулярных комплексов фуллеренов с TTFпроизводными и их аналогами показал, что стопочные мотивы для них не характерны, а данные колебательной спектроскопии этих комплексов свидетельствуют об отсутствии значимого переноса заряда с донора на фуллерен.¹⁰⁰ Характерной чертой упаковки молекул в таких кристаллах является неплоская геометрия TTF-производных, прилегающих к соседним молекулам фуллерена на ван-дер-ваальсовых межатомных расстояниях (рис. 7).

Анализ структурных данных для молекулярных комплексов TTF, содержащихся в CSD (более 300 структур), показал, что молекулы производных TTF с объемными заместителями или в ван-дер-ваальсовых кристаллах с крупными неплоскими молекулами нередко изогнуты. Изгиб TTFостова, наблюдаемый почти во всех комплексах тетрахалькогенфульваленов с фуллеренами, обеспечивает его более плотное прилегание к сфероидальной молекуле С_n и, таким образом, имеет стерическую природу (см. рис. 7). Исключение составляет комплекс C_{60} · (BEDT – TTF + I_3^-), в котором плоский фульвален присутствует в виде катион-радикала.¹⁰¹ Допирование щелочными металлами молекулярного комплекса OMTTF \cdot C₆₀ \cdot C₆H₆ (M = (K, Rb) приводит к появлению сверхпроводящих фаз с относительно высокой температурой перехода в сверхпроводящее состояние Т_с (17 К в случае калия и 23 К в случае рубидия).102

Молекулы конденсированных ароматических углеводородов и полиаренов, комплементарные молекулам фуллеренов по ван-дер-ваальсовой форме, также могут образовывать с ними молекулярные комплексы. Помимо рассмотренного выше комплекса с диантраценом C_{60} ·DAN·3 C_6H_6 ,⁹² примером может служить сольватированный комплекс с триптиценом C_{60} ·2 Trip·2 (o-C₆H₄Me₂).¹⁰³ Во многих кристаллах полиареновые производные принимают конформацию, «облегающую» фуллереновый остов, увеличивая таким образом число энергетически выгодных ван-дер-ваальсовых контактов.

В координационных соединениях металлов с макроциклическими тетраазалигандами, образующих молекулярные контакты с фуллеренами, атом металла имеет плоскоквадратное координационное окружение и склонен к дополнительному связыванию. В данном классе соединений часто встречается структурный мотив зигзагообразных цепочек из чередующихся молекул фуллерена и порфирина (рис. 8) с укороченными контактами металл…фуллерен. Подобные комплексы часто рассматривают в качестве супрамолекуляр-

Рис. 8. Мотив зигзагообразных цепочек в комплексах фуллеренов с металлопорфиринатами.⁴⁷

ных матриц, способных зафиксировать молекулу фуллерена в одной ориентации и уменьшить ротационную разупорядоченность структуры. Так, молекула-«клетка», содержащая два цинк-порфиринатных фрагмента, соединенных по парациклофановому типу, образует с фуллереном С₆₀ прочный комплекс состава 1:1, устойчивый в растворе. Этот комплекс был выделен с помощью хроматографии¹⁰⁴ и исследован методом РСА.¹⁰⁵ Также охарактеризован методом РСА комплекс, в котором молекула бакминстерфуллерена охвачена двумя палладийпорфиринатными фрагментами, связанными одной мостиковой группой (рис. 9). 106 Однако среди исследованных комплексов с порфиринатами металлов имеются примеры как упорядоченных, так и разупорядоченных молекул фуллеренов. По-видимому, вторичное связывание металл…фуллерен, будучи достаточно слабым взаимодействием, не определяет общего строения кристалла, однако при благоприятном взаимном расположении молекул порфирина и фуллерена оно может повлиять на степень упорядоченности последней.45

Расстояния М···C, характерные для «вторичных» взаимодействий металлопорфиринов и родственных им соединений с углеродными каркасами LM···C_n (L — макроциклический лиганд), лежат в интервале между обычной π -координацией (~2.0–2.3 Å) и ван-дер-ваальсовым контактом (\geq 3.0 Å).

Рис. 9. Комплекс С₆₀ с молекулой PdBPPyP, содержащей два связанных Pd-порфиринатных фрагмента.

Так, в комплексе $C_{60} \cdot \text{FeTPP}^+ \cdot (C_6F_5)_4B^- \cdot \cdot 2.5$ (*o*- $C_6H_4Cl_2$) расстояния Fe···C составляют 2.70 Å.¹⁰⁷ Во многих случаях вторичные взаимодействия металл-фуллерен действительно стабилизируют определенную ориентацию фуллеренового каркаса, препятствуя разупорядочению. Однако в некоторых соединениях этого типа, например в комплексе C_{60} с тетракис(3,5-ди-*mpem*-бутилфенил)порфиринатом кобальта, наряду с короткими контактами Со···C (2.59 Å) наблюдается разупорядочение фуллеренового остова.¹⁰⁸

Известны молекулярные комплексы фуллеренов с цикловератриленом и каликсаренами. В некоторых из них присутствует кристаллизационная вода или спирт, что нехарактерно для других, как правило, гидрофобных производных фуллерена. В таких комплексах сфера фуллерена укладывается в чашеобразную органическую молекулу. Структурно исследовано 16 различных комплексов фуллерена C_{60} с замещенными каликсареновыми производными от каликс[3]- до каликс[6]арена (см. табл. 2). Хорошо растворяющийся в воде циклодекстрин образует комплекс с фуллереном, поэтому можно перевести фуллерен в водный раствор в концентрации до 10^{-5} моль $\cdot n^{-1}$. Кристаллическая структура этого комплекса не изучена.¹⁰⁹

Структурные мотивы $(C_n)_{\infty}$ в молекулярных комплексах фуллеренов и их химически модифицированных производных близки и могут рассматриваться вместе. На рис. 10 представлены распределения всех кристаллических структур производных фуллерена по параметру разбавления, МКЧ и *R*-фактору. На гистограмме распределения параметра разбавления для всех структурно исследованных производных фуллеренов (см. рис. 10,*a*) имеются два максимума, отвечающих $\rho = 0.8$ и 2.0. Первое значение типично для слоистых гексагональных упаковок, второе — для ажурных

Рис. 10. Распределение фуллереновых структур, взятых из CSD, по параметру разбавления (*a*), по МКЧ (*b*) и по *R*-фактору (*c*).

Распределение по МКЧ (см. рис. 10,*b*) всех фуллереновых структур, депонированных в CSD, показывает распространенность разреженных структурных мотивов и постепенное уменьшение числа упаковок при МКЧ \geq 6, а также сильное преобладание четных молекулярных координационных чисел над нечетными. Последнее, видимо, можно объяснить преобладанием центросимметричных мотивов (C_n)_∞.

Распределение исследованных структур по значению *R*-фактора (см. рис. 10,*c*) сдвинуто в сторону $R \ge 0.05$ и имеет характерный «хвост» в области $R \ge 0.10$; последнее указывает на снижение точности РСА для данного класса соединений. Причинами относительно низкой точности определения структур фуллеренов являются дефекты, ошибки в наложении слоев и частая ротационная разупорядоченность сфероидальных кластеров C_n (доминирующая в кристаллических структурах с $R \ge 0.10$). В ряде молекулярных комплексов фуллерена разупорядочена также компонента «гостя», что дополнительно снижает точность РСА.

Ротационную разупорядоченность молекул фуллерена в некоторых случаях удается аппроксимировать совмещением двух молекул С_n в разной ориентации с частичной заселенностью соответствующих атомных позиций и наложением некоторых позиций атомов, принадлежащих к разным ориентациям. Для уменьшения корреляций атомных параметров в разупорядоченных структурах при уточнении по методу наименьших квадратов нередко используют углеродный каркас с фиксированной геометрией. В случае С₆₀ наиболее часто встречаются два основных типа разупорядоченности (рис. 11): две ориентации, связанные поворотом на 90° относительно молекулярной оси симметрии второго порядка, и две ориентации, связанные поворотом на 60° относительно оси симметрии третьего порядка. При разупорядочении первого типа 48 пар близко расположенных атомов углерода из разных ориентаций задают общими позициями, а разупорядоченная часть молекулы, т.е. пространственно разделенные атомные позиции с частичными заселенностями, образует характерные «кресты», расположенные по вершинам октаэдра на сфере фуллерена. При разупорядочении второго типа у молекулы С₆₀ имеются упорядоченные «полюса» и разупорядоченный экваториальный пояс. Для молекулы С₇₀ не выявлено подобных типов регулярного наложения ориентаций, и разупорядоченные структуры, как правило, можно аппроксимировать наложением двух молекул с фиксированной геометрией без общих атомных позиций.

Для предсказания предпочтительных взаимных ориентаций разупорядоченной сфероидальной молекулы была предложена модель «резиновой полости».¹¹⁰ Согласно этой модели в равновесной ориентации молекулы фуллерена все

Рис. 11. Основные виды ротационной разупорядоченности молекул бакминстерфуллерена в кристалле (одна ориентация показана утолщенными линиями, другая — тонкими).

a — поворот на 90° вокруг оси 2, b — поворот на 60° вокруг оси 3.

ее атомы находятся в пологих минимумах ван-дер-ваальсова потенциала, поэтому увеличение потенциальной энергии при повороте молекулы в первом приближении пропорционально сумме квадратов радиальных растяжений ее ван-дерваальсовой поверхности вблизи позиций атомов по сравнению с исходной равновесной поверхностью, отвечающей минимуму потенциальной энергии

$$\Delta U = k \sum \Delta \mathbf{r}_i^2, \tag{2}$$

где суммирование проводится по радиусам-векторам всех атомов. Наиболее вероятные альтернативные ориентации при ротационной разупорядоченности соответствуют локальным минимумам ΔU , т.е. наименьшим изменениям вандер-ваальсовой формы молекулы. Расчет на основе модели «резиновой полости» воспроизводит оба наблюдаемых типа разупорядоченности C_{60} и отсутствие характерных типов разупорядоченности для C_{70} , а также предсказывает возможные типы разупорядоченности для других высокосимметричных сфероидальных молекул (рис. 12).

В некоторых молекулярных комплексах, как и в чистом фуллерене, происходят фазовые переходы второго рода типа порядок – беспорядок. Например, такой переход имеет место в комплексе состава $C_{60} \cdot (C_6H_5)_2$,¹¹¹ в котором разупорядочены молекулы как фуллерена, так и бифенила. При понижении температуры происходят два фазовых перехода с упорядочением составляющих кристалла: при 212 К упорядочивается бифенил, а при 147 К — фуллерен.

Отдельную группу соединений, кристаллохимически близких к молекулярным комплексам, составяют фуллеренсодержащие соли с крупными ионами. Существуют соединения, в которых фуллерен присутствует как в нейтральном (например, $C_{60} \cdot \text{BEDT-TTF}^+I_3^-$ (см.¹¹⁰)), так и в ионном виде (например, соль $C_{60}^- \cdot 2 \operatorname{Ph}_4 P^+ \cdot \operatorname{Cl}^-$ (см.¹¹²)). Противоион может быть не только органическим, но и металлсодержа-

Рис. 12. Сечения штрафной функции ΔU в модели «резиновой полости» для C₆₀ (*a*), C₈₀ (*b*) и C₆₀F₄₈ (*c*).

a — вращение вокруг оси **2**; отмечены углы, соответствующие ориентациям с «крестами» (К) и «поясом» (П) из частично заселенных атомных позиций; b — вращение вокруг оси **5**; c — вращение молекулы вокруг оси, проходящей через противоположные связи 6/6; звездочками отмечены вторые предпочтительные ориентации.

щим, как в серии изоморфных сольватированных аммиаком солей $C_{60}^{2-} \cdot M(NH_3)_6^{2+} \cdot 6 NH_3$ (M = Mn, Cd (см.¹¹³), Co, Zn (см.¹¹⁴), Ni (см.¹¹⁵)), содержащих плоские квадратные слои фуллерид-дианионов и аммиакаты с октаэдрической координацией металла. Исследованы также сольват фуллерида калия с тетрагидрофураном $C_{60}^{3-}K_3^+ \cdot 14$ THF (см.¹¹⁶) и фуллерида 2,2,2-криптанда калия с толуолом $C_{60}^{2-} \cdot 2$ СгурtK ⁺ · · 4 PhMe (см.¹¹⁷) (в обеих структурах упаковка фуллереновых анионов островная).

Свойства фуллерид-анионов в растворе и в конденсированном состоянии обсуждены в обзоре ¹¹⁸. Методом циклической вольтамперометрии показано, что бакминстерфуллерен в растворе способен обратимо восстанавливаться до моно-, ди- и трианиона. Поскольку НСМО фуллерена трехкратно вырождена, анионы содержат, соответственно, один, два и три неспаренных электрона и дают характерные сигналы в спектрах ЭПР. В апротонных средах возможно восстановление C₆₀ до диамагнитного гексааниона.¹¹⁹

Структурные мотивы в указанном типе соединений фуллеренов, как и в молекулярных комплексах, задаются в основном ван-дер-ваальсовыми потенциалами крупных молекул С_n. Упаковка фуллерид-анионов за счет электростатического взаимодействия с катионами несколько плотнее, чем упаковка в случае молекулярных комплексов, однако отрицательный заряд распределен по поверхности молекулы фуллерена и не препятствует ее вращению. Поэтому среди анионных производных фуллерена также встречаются как упорядоченные, так и разупорядоченные структуры.

В ион-радикальной соли с тетракис(диметиламино)этиленом C_{60}^- TDAE⁺ (см. табл. 2) зафиксирован низкотемпературный ферромагнетизм с температурой перехода $T_c = 16 \text{ K}.^{120}$ Некоторые другие аналогичные соли бакминстерфуллерена с донорными аминами, не охарактеризованные структурно, также проявляют различные типы ферромагнитного или антиферромагнитного упорядочения.³ Были предприняты попытки сопоставить магнитные свойства таких веществ с вращением фуллеренового остова, несущего отрицательный заряд.¹²¹

Фуллерид-анион с зарядом от 1 — до 5 — подвержен янтеллеровскому искажению, вследствие которого нарушается симметрия I_h молекулы. В наиболее точно исследованной упорядоченной структуре $C_{60}^{2-2} \cdot 2 \,(Ph_3P)_2 N^+$ молекула C_{60} расположена в центре симметрии.¹²² Длины связей типа 6/6 составляют 1.39–1.41 Å, связей типа 5/6 — 1.43–1.46 Å. Радиальные искажения углеродного каркаса, рассчитанные

Рис. 13. Ян-теллеровские радиальные искажения молекулы C_{60} в C_{60}^{2-} 2 (Ph₃P)₂N⁺, рассчитанные по данным CSD.

1 — атомы, удаленные от центра, 2 — атомы, приближенные к центру. Отклонения атомов от поверхности идеальной сферы пропорциональны размерам кружков (показан масштаб). нами для этого дианиона с использованием атомных координат, приведенных в CSD, иллюстрирует рис. 13.

Описаны структурно не исследованные ионные соли $C_{60}(SbF_6)_2$ и $C_{60}(AsF_6)_2$ на основе фуллерена C_{60} , в которых он является дикатионом.¹²³ Методом ЯМР¹⁹F показано, что гексафторидный анион в них свободно вращается. Фотоэлектронные спектры ионов C_{60}^+ , полученные на СИ в молекулярных пучках, показали наличие динамических янтеллеровских искажений.¹²⁴

V. Фуллериды металлов

В ионных соединениях фуллеренов с крупными неорганическими или органическими катионами упаковка углеродных кластеров отличается от плотной и подчиняется тем же закономерностям, что и в молекулярных комплексах. Помимо таких соединений фуллерены способны образовывать двойные и тройные фазы с металлами, близкие по строению и свойствам к бинарным неорганическим соединениям — ионным солям. Значительная часть структурных данных для этих фаз получена методом порошковой дифрактометрии на СИ с уточнением кристаллической структуры по методу Ритвельда.

При взаимодействии твердого бакминстерфуллерена с щелочными металлами получают кристаллические фуллериды. Заполнение атомами щелочных металлов октаэдрических, а затем и тетраэдрических пустот в ГЦК-упаковке углеродных сфер приводит соответственно к соединениям типа МС₆₀ и М₃С₆₀.^{125, 126} Дальнейшее допирование сопровождается перестройкой всей структуры. Конечным его продуктом является фаза M₆C₆₀,¹²⁷ в которой фуллереновые сферы упакованы по объемноцентрированному кубическому типу (ОЦК), а в центрах граней расположены квадраты из четырех катионов металла (рис. 14). Существует также промежуточная фаза состава М₄С₆₀ с аналогичной упаковкой молекул фуллерена, где в части пустот содержится не по 4, а по 2 атома металла, и симметрия понижена до орторомбической.¹²⁸ В случае лития возможно дальнейшее допирование, приводящее к продукту состава C₆₀Li₁₅ с ГЦК-упаковкой остовов фуллерена.¹²⁹

Фуллериды щелочных металлов с трехзарядным анионом бакминстерфуллерена, НСМО которого заполнена наполовину, при комнатной температуре являются проводниками, а при низких температурах (18 К для K_3C_{60}) переходят в сверхпроводящее состояние.¹³⁰ Путем варьирования металлических компонентов фазы была выявлена положительная корреляция критической температуры с параметром кубической кристаллической решетки.¹³¹ Для соли $Cs_xRb_{3-x}C_{60}$ было получено значение $T_c = 33$ К (см.¹³²), а допирование смесью рубидия и таллия привело к максимальной для производных фуллеренов величине $T_c = 45$ К

Рис. 14. Упаковка атомов в металлофуллеренах M₆C₆₀. Ребра ячейки показаны тонкими линиями; фуллерид-анионы схематически представлены сферами.

(см.¹³³). В исследовании ¹³⁴ и других работах тех же авторов сообщалось о гораздо более высоких значениях критических температур, достигнутых в случае дырочно-допированного C₆₀ и его сольватов. Эти данные, однако, были впоследствии опровергнуты.¹³⁵ Результаты калориметрического исследования солей типа M_3C_{60} показали, что ориентационный фазовый переход, характерный для чистого C₆₀, в них сохраняется, но происходит при более высоких температурах (299 К для Na₂CsC₆₀, 313 К для Na₂RbC₆₀ и 305 К для Na₂KC₆₀).¹³⁶

Фуллериды состава $KCsBaC_{60}$ и KBa_2C_{60} с аналогичной структурой, но с более высоким зарядом аниона, — относительно плохие проводники металлического типа. Сверхпроводимости в них не обнаружено.¹³⁷

Фуллериды, содержащие гексаанион C_{6-}^{6-} , — диэлектрики. Замена части катионов на двухзарядные ($K_3Ba_3C_{60}$) и повышение формального заряда фуллеренового остова до 9 приводит опять к электропроводящей фазе. У нее также была обнаружена сверхпроводимость, однако при более низкой температуре (5 K).¹³⁸ Фуллериды кальция Ca₅C₆₀ (см.¹³⁹) и бария Ba₆C₆₀ (см.¹⁴⁰) по структуре аналогичны солям типа M₆C₆₀ (в случае кальциевой соли часть позиций металла вакантна), но являются проводниками и обладают сверхпроводимостью с критической температурой 4–8 K.

Структура фуллерида иттербия состава Yb_{2.75}C₆₀ может быть описана как аналог K₃C₆₀, в котором 1/8 всех октаэдрических пустот вакантна, а катионы смещены из центров пустот. В связи с упорядочением вакансий все ребра исходной кубической ячейки удвоены, и симметрия решетки понижена до орторомбической.¹⁴¹ Исследования систем C₆₀–Eu (см.¹⁴²) и C₆₀–Sm (см.^{143, 144}) показали наличие аналогичных фуллеридов, а также фазы состава M₆C₆₀ со структурой K₆C₆₀. У орторомбической фазы Sm_{2.75}C₆₀ обнаружена аномальная температурная зависимость параметров ячейки (см. рис. 15) (при *T* < 32 К коэффициент температурного расширения становится отрицательным), что обусловлено упорядочением расположения двухзарядных и трехзарядных катионов металла в ячейке.¹⁴⁵

Палладий и платина образуют с бакминстерфуллереном кристаллические соединения переменного состава $C_{60}M_x$ ($1 \le x \le 7$), в которых формально нульвалентный металл, по-видимому, координирован двойными связями молекулы фуллерена.^{146, 147} Эта структурная модель не подтверждена дифракционными методами, однако она согласуется с данными EXAFS для Pd-производных ¹⁴⁸ и хорошо объясняет превращение фуллеридов палладия и платины в π -комплексы

Рис. 15. Температурная зависимость расширения элементарной ячейки $Sm_{2.75}C_{60}$.

с η^2 -С₆₀-лигандом при действии органических фосфинов $PR_{3.6}^{6}$ Строение металлофуллеренов рассмотрено в обзоре ¹⁴⁹.

Фуллерен С₇₀ образует со щелочными металлами ряд фуллеридов состава MC70, M4C70 и M6C70.¹⁵⁰ ГЦК-Фаза М₃С₇₀ устойчива лишь при повышенной температуре, а при охлаждении либо переходит в тригональную фазу, либо диспропорционирует. Однако она может быть стабилизирована подбором катионов подходящего размера (например, натрия и цезия) (Na₂CsC₇₀), с тем чтобы два меньших по размеру катиона натрия заняли тетраэдрические пустоты, а более крупный катион цезия — октаэдрическую. 151 Получена также ГЦК-фаза состава Ва₃С₇₀.¹⁵² Поскольку НСМО молекулы С70 вырождена однократно, а следующая по энергии орбиталь — двукратно (см. рис. 3), тетраанион С⁴⁻₇₀ имеет наполовину заполненную ВЗМО. У солей состава M_4C_{70} , как и у М₃С₆₀, обнаружена сверхпроводимость. Известны также [70]-фуллериды редкоземельных металлов. Среди фуллеридов европия⁵² выделены две фазы состава Еи_{3-x}C₇₀ и $Eu_{9-x}C_{70}$. По данным метода порошковой рентгенографии первый из них (антиферромагнетик) имеет моноклинную структуру, аналогичную по мотиву расположения атомов гостя структуре М_{2.75}С₆₀, а второй (ферромагнетик) близок по строению к ГЦК-фуллеридам М₆С₆₀, однако в его октаэдрических пустотах располагаются не единичные атомы европия, а кластеры из нескольких атомов.52

Фуллериды на основе высших фуллеренов менее исследованы. Предельным продуктом допирования C_{84} является соль состава $K_{8+x}C_{84}$, аналогичная по структуре K_6C_{60} и содержащая упорядоченные анионы фуллерена. Известен также фуллерид K_3C_{84} с меньшим содержанием металла, в котором позиции атомов калия заняты частично и углеродные кластеры разупорядочены.¹⁵³

VI. Олигомеры и полимеры фуллеренов

Наличие двойных связей позволяет молекулам фуллеренов образовывать олигомеры и полимеры под действием излучения, давления, нагрева и различных химических инициаторов радикального или анионного характера. Превращения фуллеренов в условиях высокого давления описаны в обзоре ⁵.

Чистый бакминстерфуллерен в условиях анионного катализа образует димер.¹⁵⁴ С использованием метода РСА показано, что димер C_{120} , исследованный в форме сольвата с *о*-дихлорбензолом, является продуктом [2+2]-циклоприсоединения по связям 6/6 (рис. 16,*a*). В образующемся четырехчленном цикле из sp³-атомов углерода (сферический эксцесс 26.2–26.7°) значение длины связи 6/6 в фуллереновых

Рис. 16. Димер $(C_{60})_2(a)^{154}$ и димерный дианион $(C_{70})_2(b)$.¹⁵⁵

остовах достигает 1.581 Å, а экзополиэдрические связи С – С имеют длину 1.575 Å. В работе ¹⁵⁶ описан синтез димера C_{60} под давлением (5 ГПа) из молекулярного комплекса (ET)₂ C_{60} (ЕТ — бис(этилендитио)тетратиафульвален), в котором молекулы фуллерена ориентированы связями 6/6 друг к другу. Получены также различные изомерные тримеры C_{60} , зафиксированные методами масс-спектрометрии и электронной микроскопии высокого разрешения, однако выделить эти вещества в индивидуальном состоянии пока не удалось.¹⁵⁷

Путем механо-химической реакции получен кросс-димер C_{60} и C_{70} ,¹⁵⁸ структура которого не исследована. По данным квантово-химических расчетов он может представлять собой продукт [2+2]-циклоприсоединения к фрагменту C_{70} по связи 6/6 типа *b* (см. рис. 1,*b*).

Под давлением С₆₀ образует различные полимерные фазы. Некоторые из них получены в виде монокристаллов и исследованы методом РСА. На ранних стадиях модификации фазы имеют орторомбическую решетку, содержащую линейные полимерные цепочки фуллереновых остовов.¹⁵⁹ Более глубокая модификация под давлением 2-5 ГПа приводит к образованию двух фаз: ромбоэдрической 160 и тетрагональной,¹⁶¹ содержащих соответственно квадратные и гексагональные слои ковалентно связанных остатков С₆₀. Рентгеноструктурное исследование монокристалла тетрагональной фазы показало,162 что она имеет орторомбическую элементарную ячейку, близкую к тетрагональной ($a \approx b$); в исследовании¹⁶³ ячейка интерпретирована как тетрагональная. Длины межфуллереновых связей С-С в полимере составляют 1.60 А. По данным метода порошковой рентгеновской дифракции под действием высокого давления (13 ГПа) фуллерены связываются в относительно нерегулярную трехмерную сетку.¹⁶⁴ При давлении 8 ГПа и температуре 800-900°С полимеризация молекул С₆₀ и С₇₀ сопровождается частичным разрушением углеродных кластеров и образованием аморфных углеродных материалов; некоторые из них приближаются по твердости алмазу. 164, 165

Более легко проходит полимеризация фуллереновых анионов. Так, фуллерид Na₂CsC₆₀ с кубической структурой при 0.7 ГПа образует линейный полимер.¹⁶⁶ Соединения щелочных металлов типа МС₆₀, в которых при комнатной температуре анионы ротационно разупорядочены, при понижении температуры образуют полимер, в котором фрагменты С₆₀ связаны в бесконечные цепочки одинарными связями С-С.167 Структура ион-радикальной соли $Cp'_2Cr \cdot C_{60} \cdot 2C_6H_4Cl_2 (Cp' = C_5Me_5)$ при комнатной температуре содержит димеры $(C_{60})^{2-}_2$, соединенные одной связью 1.60 Å.¹⁶⁸ ллиной Другая ион-радикальная соль $(C_6H_5Me)_2Cr^+ \cdot C_{60}^- \cdot CS_2$ по данным PCA представляет собой линейный полимер с необычно коротким межмолекулярным контактом С-С длиной 2.24 Å.¹⁶⁹ В системе (С₆H₅Me)₂Cr-С₆₀ обнаружен также другой, несольватированный молекулярный комплекс состава 1:1, в котором при низкой температуре С₆₀ существует в виде димерного дианиона, соединенного одной σ -связью, а при высокой (> 250 K) – виде отдельных ротационно разупорядоченных анионов.¹⁷⁰

Фуллерен С₇₀ также способен полимеризоваться как в нейтральном, так и в анионном виде. Структура полимера чистого С₇₀, полученного из гексагональной модификации исходного фуллерена, определена методом РСА в работе ¹⁷¹ (расчет по методу атом-атомных потенциалов показал, что взаимная ориентация молекул С₇₀ в кубической модификации неблагоприятна для образования полимерных цепочек). Молекулы С₇₀ в полимере объединены в цепочки посредством [2+2]-циклоприсоединения по связям 6/6 типа *b* (см. рис. 1,*b*). В диметилформамид-бензольном сольвате молекулярного комплекса ион-радикальной соли Cs₂(C₇₀)₂ · CTV· · (DMF)₅· C₆H₆ с цикловератриленом (см. табл. 2) моноанион фуллерена существует в виде димера (C₇₀)₂. Два фуллереновых фрагмента соединены одной связью длиной 1.56–1.58 Å (в разных симметрически независимых димерах), образованной атомами типа 1 (см. рис. 1,*b*). В несимметрично искаженной структуре остова C₇₀ пятиатомная грань «полюса» молекулы приобретает геометрию конверта с атомом C(sp³) в вершине (рис. 16,*b*).¹⁵⁵ Анионы C₇₀^{2–} в соединениях типа MC₇₀ · *n* NH₃ (M = Ca, Sr, Ba, Eu, Yb) объединены в бесконечные цепочки экзополиэдрическими связями C–C.¹⁷²

VII. «Бинарные» соединения

В химических реакциях фуллерены проявляют себя как сопряженные полиалкены. Устойчивый фуллереновый остов в реакциях присоединения и замещения экзополиэдрических фрагментов можно рассматривать как большой псевдоатом. Ниже обсуждаются «бинарные» соединения фуллеренов $C_n X_m$, где X — внешние атомы либо устойчивые фрагменты (CH₃, CF₃), ковалентно связанные с фуллереновым ядром C_n .

Структурное исследование смесей полиаддуктов $C_n X_m$ затруднено большим количеством изомеров присоединения. Так, симметричное присоединение двух функциональных групп к одной из 30 эквивалентных связей типа 6/6 в бакминстерфуллерене делит остальные связи 6/6 на девять неэквивалентных классов. Число теоретически допустимых изомеров стремительно растет с увеличением числа присоединенных групп (6 $\cdot 10^{14}$ для C₆₀H₃₆ (см.¹⁷³)), поэтому невозможен их полный квантово-химический расчет с поиском глобального минимума.

При контакте бакминстерфуллерена с воздухом в примесных количествах образуются оксиды С₆₀. Для целевого синтеза оксидов используют м-хлорпероксобензойную кислоту — стандартный реагент окисления алкенов в эпоксиды. Выделенные и структурно исследованные кристаллы монооксида C₆₀O (см.¹⁷⁴) и диоксида C₆₀O₂ (см.¹⁷⁵) изоморфны чистому бакминстерфуллерену. Экзополиэдрические атомы кислорода, находящиеся в пустотах ГЦКупаковки фуллереновых остовов, не выявлены из-за ротационной разупорядоченности. В оксиде С60О зафиксирован ориентационный фазовый переход при 278 К. Результаты РСА л-комплексов оксифуллеренов показали, что в молекуле $(\eta^2 - C_{60}O)Ir(CO)Cl(PPh_3)_2$ атом кислорода присоединен к связи 6/6, а атом металла координирован другой связью 6/6 того же шестичленного цикла.¹⁷⁶ В С₆₀О₂-ядре молекулы (η²-С₆₀О₂)Ir(PPh₃)₂(CO)Cl два атома кислорода присоединены к соседним связям 6/6; металлокомплекс содержит смесь изомерных продуктов координации металла по различным связям того же типа.¹⁷⁷ В монооксиде фуллерена С₇₀, структурно исследованном в виде комплекса (η²-С₇₀О)Іг(PPh₃)₂(СО)Сl,¹⁷⁸ атомы кислорода и иридия присоединены по соседним связям 6/6 типа b (см. рис. 1,b).

Свойства гидридов фуллерена рассмотрены в обзоре⁴. Основным продуктом гидрирования бакминстерфуллерена является $C_{60}H_{36}$, охарактеризованный по данным методов ИК- и КР-спектроскопии¹⁷⁹ как смесь изомеров симметрии D_{3d} и S_6 . Однако в работе¹⁸⁰ гидрид фуллерена с тем же составом по данным ЯМР¹H, ¹³С и ³Не для эндоэдрального соединения He@ $C_{60}H_{36}$ описан как смесь изомеров симметрии C_3 и C_1 , изоструктурных изомерам фторида $C_{60}F_{36}$ (см. ниже). Существует гидрид $C_{60}H_{18}$, также изоструктурный соответствующему фториду¹⁸¹ по данным ЯМР³Не для эндоэдральных производных ³Не@ $C_{60}X_{18}$ (X = H, F).¹⁸² Сведений о РСА монокристаллов гидридов фуллеренов до настоящего времени нет. Исследование $C_{60}H_{36}$ методом порошковой рентгеновской дифракции показало,¹⁸³ что он имеет элементарную ОЦК-ячейку с параметром 11.75 Å.

Иод химически не взаимодействует с C_{60} , образуя молекулярный комплекс $C_{60} \cdot 2I_2$,¹⁸⁴ принадлежащий к структурному типу с плотными гексагональными слоями (C_{60}) $_{\infty}$. Известен также иодсодержащий сольват C_{60} ·PhMe·I₂,¹⁸⁵ относящийся к тому же типу упаковки молекул фуллерена. Все прочие галогены вступают в реакцию присоединения к фуллереновому остову.

Описан ряд продуктов фторирования бакминстерфуллерена от $C_{60}F_2$ (см.¹⁸⁶) до $C_{60}F_{48}$ (см.¹⁸⁷), сохраняющих полиэдрический углеродный каркас C_{60} . Методы получения фторфуллеренов и накопленные данные об их структуре приведены в обзоре ¹⁸⁸. Методом РСА исследовано строение $C_{60}F_{18}$ (см.^{189,190}), $C_{60}F_{18}O$ (см.¹⁹¹), $C_{60}F_{17}CF_3$ (см.¹⁹²), $C_{60}F_{36}$ (трех изомеров) ^{193,194} и $C_{60}F_{48}$ (см.^{195,196}). Диаграммы Шлегеля структурно исследованных фторидов и бромидов фуллерена приведены на рис. 17. Молекулы фторидов C_{60}

Рис. 17. Диаграммы Шлегеля $C_{60}F_{18}(a)$, $C_{60}F_{36}(b)$, $C_{60}F_{48}(c)$, $C_{60}Br_6(d)$, $C_{60}Br_8(e)$, $C_{60}Br_{24}(f)$. На рис. *b* стрелками показаны 1,3-смещения атомов фтора, дающие *C*₃-изомер, двойной стрелкой — сдвиг, переводящий его далее в изомер *C*₁; на рис. *a*, *b* показаны ароматические циклы, на рис. *c*, *f* — положения двойных связей.

Рис. 18. Строение молекул C₆₀F₁₈ (*a*), C₆₀F₃₆ (*b*) и C₆₀F₄₈ (*c*).

Таблица 5. Геометрические параметры структурно исследованных молекул фторфуллеренов.

Формула	Симмет- рия	Связи С-С, Å				k ^a	R	Разупоря-	Ссылки
		sp^3-sp^3	sp^3-sp^2	ароматические	$\mathbf{C} = \mathbf{C}$			дочение	
C ₆₀ F ₁₈ ·PhMe	C_{3v}	1.54-1.67	1.47-1.53	1.37	_	0.74	0.049	Нет	189
C ₆₀ F ₃₆ · 1.75 PhMe	Т	1.55 - 1.66	1.48 - 1.49	1.36 - 1.38	_	0.70	0.090	Есть	193
C60F36 · 3.5 PhMe	C_1	1.54 - 1.68	1.46 - 1.54	1.37 - 1.38	1.32	0.70	0.059	Нет	194
$C_{60}F_{48} \cdot C_6H_3Me_3 - 1,3,5$	S_6	1.54 - 1.61	1.49 - 1.58	_	1.29 - 1.30	0.71	0.051	Есть	195

^а *k* — коэффициент упаковки молекул в кристалле по Китайгородскому.⁶⁴

изображены на рис. 18, а их основные геометрические параметры приведены в табл. 5.

В молекуле фторида $C_{60}F_{18}$ симметрии C_{3v} , исследованного в виде сольвата с толуолом¹⁸⁹ и в индивидуальной форме,¹⁹⁰ все атомы фтора присоединены к одной половине фуллеренового остова вокруг уплощенного (сферический эксцесс $\varphi_i \leq 0.1^\circ$) шестичленного ароматического цикла, изолированного от π -системы остальной части молекулы (см. рис. 17,*a*). Все sp³-атомы углерода пирамидализованы (26.4° $\leq \varphi_i \leq 29.9^\circ$), а соседние с ними уплощены ($\varphi_i = 3 - 6^\circ$) по сравнению с немодифицированным C_{60} , поэтому углеродный каркас принимает форму «панциря черепахи» (см. рис. 18,*a*).

Три симметрически эквивалентные одинарные связи $C(sp^3) - C(sp^3)$ типа 5/6 в молекуле $C_{60}F_{18}$ удлинены до 1.67 Å. Присоединение атома кислорода по одной из таких связей с образованием $C_{60}F_{18}O$ сопровождается ее разрывом.¹⁹¹ Три атома фтора, максимально удаленные от ароматического шестичленного цикла, могут замещаться на фенильные группы (реакция Фриделя – Крафтса) с образованием $C_{60}F_{15}Ph_{3}$,¹⁹⁷ а также подвергаться нуклеофильному замещению.¹⁹⁸ В структуре $C_{60}F_{17}CF_3$ трифторметильная группа занимает место одного из периферийных атомов фтора; в кристалле присутствует смесь двух изомеров замещения в разных ориентациях.¹⁹²

Строение фторида $C_{60}F_{20}$, не исследованного PCA, установлено методом ЯМР. По данным Болталиной с соавт. 199 в $C_{60}F_{20}$ все атомы фтора расположены по экватору молекулы, т.е. этот фторид не включает фрагмента структуры $C_{60}F_{18}$, что показывает возможность миграции атомов фтора по поверхности C_{60} в условиях синтеза.

Фторид $C_{60}F_{36}$ образует ряд изомеров. Преобладающий изомер исключительно редкой симметрии T был выделен и структурно исследован в виде сольвата с толуолом. Молекула сольвата содержит четыре изолированных ароматических кольца с выровненными длинами связей, аналогичных единственному ароматическому циклу в молекуле $C_{60}F_{18}$. Все остальные атомы углерода sp³-гибридизованы и связаны с атомами фтора. Сильно искаженный углеродный каркас приобретает форму, близкую к тетраэдру с закругленными ребрами и вершинами (см. рис. 18,*b*). В статически разупорядоченном кристалле содержится рацемическая смесь энантиомеров.¹⁹⁴ Второй по распространенности изомер, исследованный методом ЯМР, имеет симметрию C_3 . Третий изомер симметрии C_1 выделен и исследован методом РСА; его структура выводится из C_3 -изомера 1,3-смещением одного из атомов фтора в пятичленном цикле¹⁹⁴ (см. рис. 17,*b*).

Высший фторид фуллерена $C_{60}F_{48}$ исследован методом PCA в виде сольвата с мезитиленом.^{195,196} Молекула расположена в частной позиции симметрии $\overline{3}$ псевдоцентрированной кубической ячейки (пространственная группа $Pa\overline{3}$) и ротационно разупорядочена. В работе ¹⁹⁷ структура $C_{60}F_{48}$ интерпретирована наложением смеси D_{3d} - и S_6 -изомеров в общем соотношении 0.61 : 0.39. В работе ¹⁹⁸ ячейка ошибочно интерпретирована как объемноцентрированная, а молекула $C_{60}F_{48}$ описана как изомер симметрии S_6 .

Длины связей $C(sp^3) - C(sp^3)$ в $C_{60}F_{48}$ лежат в интервале от 1.54 до 1.61 Å.¹⁹⁵ Шесть двойных углерод-углеродных связей (1.29–1.30 Å), расположенных по вершинам октаэдра, в отличие от исходного фуллерена, относятся к типу 5/6 (см. рис. 17,*c*) и существенно вдавлены внутрь молекулы (сферический эксцесс от -2 до -9°).[‡] Это согласуется с невозможностью дальнейшего фторирования производных C_{60} без разрушения углеродного каркаса.²⁰⁰

Благодаря сильному электростатическому диполь-дипольному взаимодействию (дипольный момент $12-15\,$ Дб по данным расчетов *ab initio*) в кристалле C₆₀F₁₈·PhMe обе

[‡]Отрицательные значения сферического эксцесса отвечают оси пирамидальности атома углерода, направленной внутрь фуллеренового каркаса.

компоненты — $C_{60}F_{18}$ и PhMe — упорядочены. Коэффициент плотности молекулярной упаковки по Китайгородскому ⁶⁴ для $C_{60}F_{18}$ ·PhMe составляет 0.74 (упаковка чистого $C_{60}F_{18}$ более рыхлая ввиду невозможности заполнения пустот молекулами растворителя), а высокосимметричные $C_{60}F_{36}$ и $C_{60}F_{48}$, не имеющие дипольного момента, образуют сольваты с менее плотными разупорядоченными упаковками (k = 0.70 - 0.71, см. табл. 5). Мотив ротационной разупорядоченности молекул $C_{60}F_{48}$, наблюдаемый в кристалле $C_{60}F_{48} \cdot 2 C_6 H_3 Me_3$ -1,3,5,¹⁹⁶ воспроизводится расчетом на основе модели «резиновой полости»¹¹⁰ (см. рис. 12).

При хлорировании фуллерена образуется смесь продуктов $C_{60}Cl_n$, $n \leq 24$. Эти продукты исследованы методами ИК-спектроскопии и масс-спектрометрии.²⁰¹ Применение мягкого хлорирующего агента (ICl) позволяет получить $C_{60}Cl_6$. Его структура по данным методов ЯМР и ИК-спектроскопии аналогична структуре гексабромида (см. рис. 17,*d*).²⁰²

В продукте реакции C₆₀Cl₆ с метиллитием — гексаметилфуллерене С60Ме6, который исследован методом РСА, экзополиэдрические фрагменты расположены аналогично гексахлориду.²⁰³ Частичное замещение хлора метильными группами (до C₆₀Me₅Cl) с последующим нуклеофильным замещением Cl на OH и эпоксидированием двух связей С-С в обособленном пятичленном цикле дает продукт состава С₆₀Ме₅(OH)O₂, также охарактеризованный РСА.²⁰⁴ В его упорядоченной молекуле длины связей C(sp³) – C(sp³) составляют 1.52-1.57 Å, в эпоксидных циклах длины связей С-С равны 1.48 Å, а С-О-связей — 1.44-1.46 Å. Пять атомов хлора вокруг пятичленного цикла в C₆₀Cl₆ могут быть также замещены на фенильные группы по реакции Фриделя-Крафтса (в качестве побочного продукта образуется C₆₀Ph₄).²⁰⁵ Электронные свойства образующегося продукта состава C₆₀Ph₅Cl аналогичны свойствам пентазамещенного циклопентадиена. Его необратимое двухэлектронное электрохимическое восстановление приводит к образованию ароматического аниона,²⁰⁶ а химическая модификация позволяет получить π -комплексы металлов η^5 -типа.

Авторам работы ⁴⁹ удалось выделить и структурно исследовать производное фуллерена, функционализированное аналогичным образом по двум противолежащим пятиугольникам. Экваториальная часть фуллеренового каркаса, составленная из sp²-гибридизованных атомов углерода, воспроизводит фрагмент [5,5]-нанотрубки (рис. 19). Трифторметилирование C₆₀ с помошью трифторацетата серебра при нагревании по данным ЯМР происходит с образованием продуктов присоединения CF₃ по соседним связям 6/6 и $5/6.^{207}$

Рис. 19. Молекула $C_{60}Me_5Ph_5O_3(OH)_2$ с фуллереновым остовом, функционализированным по двум противолежащим пятиугольни-кам.⁴⁹

Рис. 20. Строение молекулы C₇₀Br₁₀ по данным PCA.⁴⁸

Проведено рентгеноструктурное исследование трех бромидов бакминстерфуллерена: $C_{60}Br_6$, $C_{60}Br_8$ и $C_{60}Br_{24}$ (шлегелевские проекции, см. рис. 17,*b*), закристаллизованных в виде сольватов с молекулярным бромом. В двух последних молекулах ближайшие атомы брома находятся в 1,3-положениях друг к другу, что, вероятно, обусловлено стерическими причинами. В молекуле $C_{60}Br_{24}$ присутствуют изолированные двойные связи как типа 5/6, так и типа 6/6. Их длины сокращены до 1.33-1.34 Å, а связи $C(sp^2) - C(sp^3)$ удлинены до 1.46-1.51 Å. Упаковка молекул $C_{60}Br_{24}$ в кристалле близка к ГЦК.

Бинарные производные С70 менее изучены. Основные продукты гидрирования имеют состав С70H36-С70H44 (см.⁴). Предельным продуктом фторирования является, повидимому, C₇₀F₅₆,²⁰⁸ тогда как хлорирование останавливается на стадии C70Cl10.209 Замещение атомов хлора на метильные группы, сопровождающееся частичным восстановлением, приводит к образованию С70Ме8, структура которого была определена методом РСА.²¹⁰ Присоединенные Ме-фрагменты расположены при атомах углерода типа 4 по обе стороны от экватора молекулы. Методом РСА установлена структура бромида С70Br10 (рис. 20), в котором атомы брома также присоединены к атомам углерода типа 4.48 Молекулярная структура бромида состава $C_{70}Br_{14}$, о получении которого сообщено в работе²¹¹, не исследована. Из бинарных производных высших фуллеренов структурно исследован бромид С78Br18, содержащий статистически разупорядоченные молекулы двух изомерных продуктов бромирования симметрии $C_{2\nu}$; возможный продукт бромирования *D*₃-изомера исходного фуллерена в кристалле отсутствует.²¹²

VIII. σ-Производные

Функционализация молекулы фуллерена обычно включает в качестве первой стадии присоединение к кратной связи C-C типа 6/6. При этом экзокоординированные атомы углерода приобретают sp³-характер и выступают над поверхностью

Рис. 21. Симметрически неэквивалентные связи 6/6 в С₆₀, химически модифицированном по одной связи 6/6. Положение связи: *1 — цис, 2 —* экваториальное, *3 — транс.*

Рис. 22. Типы σ -координации фуллерена (приведены коды структур по CSD).

остова C_{60} , что сопровождается удлинением соединяющей их связи C-C и возрастанием сферических эксцессов φ_i от 12 до $16-32^\circ$ (для ненапряженного тетраэдрического sp³-атома углерода $\varphi = 31.7^\circ$). Присоединение к одной связи 6/6 делит остальные связи 6/6 в молекуле на 9 симметрически неэквивалентных типов, из которых три условно называют *цис*положениями, четыре — *транс*-, и два — экваториальным положением (рис. 21).

Основные типы продуктов σ -присоединения к молекуле C_{60} иллюстрирует рис. 22. Бинарные продукты $C_{60}X_n$ многократного σ -присоединения к C_{60} одноэлектронных фрагментов X рассмотрены в предыдущем разделе.

Присоединение карбена к двойной углерод-углеродной связи молекулы фуллерена дает трехчленный цикл (см. рис. 22, a, e, f). Удлинение ключевой связи $C(sp^3) - C(sp^3)$ в таких соединениях в среднем до 1.59 Å (на 0.04-0.05 Å больше типичной длины одинарной связи C-C) указывает на значительные стерические напряжения вокруг sp³-атомов в фуллереновом каркасе. Четырехчленные циклы найдены только в производных димерной молекулы (C_{60})₂. Многочисленные производные с пяти- и шестичленными циклами (см. рис. 22, b-d) образуются в реакциях [2+3]- и [2+4]- циклоприсоединения. Средняя длина связи C-C, по которой происходит присоединение, при этом возрастает до 1.60 и 1.61 Å соответственно.

Функционализация двойной связи активирует для присоединения пять других связей 6/6, расположенных вместе с ней по вершинам октаэдра в остове C₆₀ (см. рис. 22,*d,e*). Дальнейшее присоединение, как правило, происходит по этим связям с образованием в пределе гексааддукта с *T_h*-симметрией углеродного каркаса (см. рис. 22, *f*). Структурно исследован, например, C₆₀(C(COOEt)₂)₆ — аддукт, содержащий шесть малонатных групп.²¹³ Известен, однако, гексааддукт с другой картиной присоединения, имеющий состав C₆₀(Tmp)₆· Solv и симметрию $D_3.^{214}$

Более редки гомофуллерены (продукты присоединения по связи 5/6). Данная связь является формально одинарной, и присоединение приводит к ее разрыву и отдалению атомов углерода на расстояние ~2.1 Å друг от друга.^{191, 215}

Фуллерен С₇₀ содержит 8 неэквивалентных связей С – С, обладающих различной стерической доступностью. В большинстве исследованных продуктов его химического модифицирования присоединение происходит по двойной связи типа *b* (см. рис. 1,*b*), которая из всех связей 6/6 имеет наибольшую сумму эксцессов образующих ее атомов. Исключениями являются аддукт C₇₀C₁₀H₁₂O₂, в котором у фуллерена задействована связь *d*-типа,²¹⁶ и гомофуллерен, образовавшийся в результате присоединения CCl₂ по одинарной связи *f*-типа с ее разрывом.²¹⁷

Кристаллохимию некоторых производных фуллеренов определяют внешние функциональные группы, присоединенные к остову C_{60} или C_{70} (например, соединяющие два остова или координирующие атомы металла). Так, оксид осмия OsO₄, применяемый в органической химии как окислитель алкенов до диолов, вступает в реакцию с бакминстерфуллереном с образованием осматного эфира 1,2-фуллеренола. Комплекс состава $C_{60}O_2OsO_2(4-BuPy)_2$ — первое производное C_{60} , которое исследовали методом PCA.²¹⁸ Известны также другие комплексы, в которых атомы металла связаны с экзополиэдрическими фрагментами, например сольват $C_{60}S_2Fe_2(CO)_6$, в котором атомы серы, координирующие биядерный фрагмент $Fe_2(CO)_6$, ковалентно присоединены к фуллерену в 1,2-положениях.²¹⁹

Кроме уже упоминавшегося димера фуллерена, существуют и другие молекулы, содержащие два связанных фуллереновых фрагмента. Некоторые из таких молекул изображены на рис. 23. Оксибифуллерен С120О (катионрадикал которого C₁₂₀O⁺, легко образующийся при действии кислорода на растворы С60, дает характерный для таких растворов сигнал ЭПР (см. 118)) структурно исследован в виде молекулярного комплекса с октаэтилпорфирином. Атом кислорода разупорядочен, однако установлено, что молекула представляет собой димер, в котором одна из межфуллереновых связей С-С заменена мостиком $C-O-C.^{82}$ В молекуле $C_{60}C(C \equiv CSiPr_3^i)C \equiv CC \equiv C(C \equiv C-C)C(C \equiv C)C(C \equiv C)C)C(C \equiv C)C(C \equiv C$ SiPr₃)CC₆₀ (см. рис. 23,*a*) два 1,2-замещенных фуллереновых остова соединены четырехатомным бутадииновым мостиком.²¹⁹ Исследовано производное димера С₆₀, в котором каждый фуллереновый остов дополнительно функционализирован по пяти связям, расположенным так же, как в гексааддуктах C₆₀ (см. рис. 23,*b*).²²⁰ Получен и исследован методом РСА металлокомплекс, включающий два фуллереновых фрагмента, каждый из которых модифицирован в гексааддукт, являющийся бидентатным σ-лигандом. Фуллереновые фрагменты в этом комплексе соединены двумя мостиковыми атомами платины (см. рис. 23,c).²²¹ В 2000 г. Накамура с соавт. получил первый фуллеренсодержащий криптанд (C₆₀O)₂(NMe(CH₂)₃NMe)₄ — производное гексахлорида фуллерена, в котором два атома хлора замещены на атом кислорода эпоксидной группы, а остальные четыре на мостиковые пропандиаминовые группы, соединяющие два фрагмента C₆₀O (см. рис. 23,*d*).²²²

Изменения длин связей С – С в σ - и π -координированном каркасе С₆₀ иллюстрируют рис. 24 и 25. Как видно из этих рисунков, присоединение любых экзополиэдрических фрагментов к связи 6/6 сопровождается ее удлинением и однотипным перераспределением длин соседних связей С–С. Искажения скелета С₆₀ в результате координации η^2 -ML фрагмента (где М — атом переходного металла, L — его лиганды) при этом существенно слабее, чем в σ -аддуктах,

Рис. 24. Распределение длин координированных связей C-C типа 6/6 в π - (*a*) и σ -производных бакминстерфуллерена (*b*).

Рис. 25. Удлинение (штриховые линии) и укорочение (сплошные линии) длин связей в молекуле фуллерена при σ - (*a*) и π -присоединении (*b*).

Модуль изменения длины связи пропорционален толщине линии (показан масштаб).

включая $C_{60}CR_2$ -производные. Следует отметить, что геометрические искажения фрагмента C_{60} как в σ -, так и в π -производных локализованы в непосредственном окружении координированной связи 6/6, т.е. фуллереновое ядро «плохо проводит» влияние присоединенных фрагментов. Структурные данные по химически модифицированным производным C_{70} пока слишком немногочисленны для получения достоверных корреляций.

Более глубокая химическая модификация фуллерена может приводить к раскрытию и перестройке углеродного каркаса. Получена молекула дикетопроизводного открытого фуллерена с одиннадцатичленным циклом, допускающим проникновение внутрь малых молекул, таких как H_2 .²²³ Другой путь модификации фуллерена, связанный со вскрытием углеродного каркаса, включает 1,2-присоединение, в результате которого образуется фуллерен с двумя избыточными атомами углерода, содержащий четырехчленный карбоцикл.⁵⁰ Примером может служить комплекс кобальта состава σ, η^2, σ -C₆₄H₄-Фрагмента.²²⁴

Кристаллические упаковки в химически модифицированных производных фуллерена подчиняются тем же общим закономерностям, что и в молекулярных комплексах. При наличии внешнего фрагмента малого размера (например, атома кислорода) образуется упаковка, аналогичная упаковке в структуре чистого С₆₀. Ковалентно связанный экзополиэдрический фрагмент с размерами, меньшими вандер-ваальсова диаметра фуллереновой сферы, играет роль «разбавляющей» компоненты в обычных структурных мотивах из (С₆₀)∞ (см. табл. 4). Так, в кристалле карбенового моноаддукта $C_{60}C(COOEt)_2 \cdot CHCl_3$ ($\rho = 0.81$)²²⁵ присутствует упаковка типа трехмерного каркаса с МКЧ = 8 (где МКЧ понимается применительно к фуллереновой субъединице, а не ко всей молекуле), а 3-бензилоксикарбонил-(60)фуллерено[1,2-*d*]изоксазол, в котором к фуллерену присоединен более объемный пятичленный изоксазольный цикл, содержит гексагональные слои сфер C_{60} с МКЧ = 6. 226 Экзополиэдрические фрагменты большего размера вместе с сольватными молекулами приводят к образованию более разреженных упаковок вплоть до изолированного расположения фуллереновых остовов, как, например, в гексааддукте С₆₀(C(COOEt)₂)₆.²¹⁹ Наличие фрагментов, присоединенных к фуллереновому каркасу, препятствует ротационной разупорядоченности, вследствие чего обычно повышается точность определения структуры.

IX. π-Производные

По химическим свойствам фуллерены как л-лиганды можно отнести скорее к полиалкенам, чем к ароматическим углеводородам. Химически не модифицированный бакминстерфуллерен служит исключительно лигандом η²-типа, способным координировать по связям 6/6 несколько атомов металла. Как и в случае σ-связывания, η²-присоединение металла к одной связи 6/6 в бакминстерфуллерене активирует пять таких же связей, расположенных по вершинам октаэдра в фуллереновом каркасе (T_h -симметрия, см. рис. 22, f). Удлинение ключевой связи 6/6 при π-присоединении меньше, чем при σ-координации (см. рис. 24). Присоединение второй π-координированной группировки атомов происходит, как правило, в *транс*-положение по отношению к первой. Максимальное количество присоединяемых таким образом металлсодержащих группировок ML_n равно 6 (в случае платины), причем атомы платины располагаются по вершинам октаэдра.227

Наличие близко расположенных двойных связей позволяет фуллеренам выступать в роли полидентатных $\eta^2:\eta^2-$ и η²:η²:η²-лигандов в комплексах с кластерами металлов платиновой группы (рис. 26). Аналогичные тридентатные функции ареновых лигандов наблюдаются, например в С₆Н₆Os₃(CO)₉.²²⁸ Структурно исследована серия комплексов осмия и рутения с С₆₀, в которых три атома металла, образующие кластер, координированы тремя двойными связями, находящимися в одном шестичленном цикле.²²⁹ Получены также комплексы, в которых бакминстерфуллерен служит монодентатным η²-лигандом при трехъядерном карбонильном кластере осмия.²³⁰ В серии родственнных комплексов, описанных в работе 231, трехъядерная группировка атомов осмия в зависимости от остального лигандного окружения включает фуллерен в качестве $\eta^2:\eta^2:\eta^2-$, $\sigma:\eta^2:\sigma-$ и $\eta^2:\eta^2$ лиганда.

Всего в CSD имется 30 структур, в которых фуллерен π -координирован с одним атомом металла, 10 π -комплексов — с двумя атомами металла, 14 — с тремя, 2 — с четырьмя, 9 — с пятью и 6 — с шестью атомами металла. Известны примеры π -комплексов, содержащих два фуллереновых лиганда при одной кластерной группировке Rh₆²³² и даже при одном атоме металла (Мо и W, см. рис. 26,*e*).²³³ В продукте окисления воздухом π -комплекса (η^2 -C₆₀)Ir(*o*-C₂B₁₀H₁₀CH₂PPh₂)(Bu^tNC)₂, содержащего в одной молекуле фрагменты карборана и фуллерена, методом РСА зафиксировано внедрение молекулы O₂ по одной из связей металл–углерод. В образующемся пятичленном пероксидном металлоцикле присутствует σ -связь Ir – C длиной 2.24 Å (рис. 27).⁵¹

 η^2 -Присоединение фрагмента ML к фуллереновому ядру сопровождается перераспределением длин связей C – C, ана-

логичным наблюдаемому при σ , σ -координации, но слабее выраженным. При образовании π -комплекса длина координирующей связи 6/6 возрастает в среднем до 1.48 Å (против 1.60 Å в C₆₀X₂). Соседние с ней связи типа 5/6 удлиняются до 1.49 Å. Наблюдается также некоторое перераспределение

Рис. 26. Типы координации фуллерен – металл. $a = \eta^2, b = \eta^2; \eta^2, c = \sigma; \sigma; \eta^2, d = \eta^2; \eta^2; \eta^2, e = «сэндвич», f = гомофуллереновый лиганд; приведены коды структур по CSD.$

Рис. 27. Строение молекулы карборан-фуллеренового π -комплекса иридия η^2 -C₆₀Ir(*o*-C₂B₁₀H₁₀CH₂PPh₂)(Bu¹NC)₂·4 PhMe (*a*) и продукта его окисления воздухом (*b*) (данные PCA).⁵¹

прилегающих связей (см. рис. 25). Как и в случае σ -производных, влияние η^2 -координации на соседние связи быстро затухает с удалением от координированной связи и практически не затрагивает «тыльной» половины фуллеренового остова.

Исследована серия однотипных моноядерных комплексов фуллеренов с иридием (фуллерен) $[Ir(CO)(CI)(PPh_3)_2]_n$, n = 1, 2 (где фуллерен = C₆₀, C₆₀O, C₇₀, C₇₀O и C₈₄). Координация атома иридия в них близка к симметричной тригонально-бипирамидальной. Геометрические параметры всех этих комплексов приведены в табл. 6. Фуллереновый лиганд занимает в координационной сфере иридия больше пространства, чем трифенилфосфин (валентный угол P–Ir–P меньше 120°, см. табл. 6).

Пентакоординированный фуллереновый фрагмент C₆₀R₅, в котором присоединенные группы расположены вокруг одного пятичленного цикла, является электронным аналогом пентазамещенного циклопентадиена и проявляет способность к η^{5} -координации. Структурно исследована таллиевая соль $C_{60}Ph_5^{-}$, ²³⁸ родственная моноциклопентадиенильным комплексам π-элементов с преимущественно ионным связыванием металл-лиганд η^5 -типа (длина связи Tl-C составляет 2.83-2.89 Å). Атом таллия дополнительно координирован атомом кислорода сольватной молекулы ТГФ на расстоянии 3.16 Å. Описан также комплекс родия С₆₀Ме₅Rh(CO)₂, в котором фуллереновый остов С₆₀Ме₅ выполняет роль настоящего η⁵-лиганда при атоме металла 239 со связывающими расстояниями Rh-C 2.12-2.27 Å.

Фуллерен С₇₀, как и в случае σ -присоединения, в большинстве π -комплексов присоединяет внешние атомы металла по связи типа *b*, а в комплексах с кластерами или несколькими отдельными атомами металла — по связям *b* и *d* (см. рис. 16). Известно одно производное состава С₇₀(C₆H₄CF₃)₃Tl·*o*-C₆H₄Cl₂, в котором фрагмент

Рис. 28. Примеры η^{5} -координации фуллерен – металл. $a - C_{60}Ph_5Tl \cdot 2.5 THF$, Tl - C = 2.83 - 2.89 Å (см.²³⁸), $b - C_{70}(C_6H_4CF_3)_3 Tl \cdot C_6H_4Cl_2$, Tl - C = 2.84 - 3.08 Å (R = p-C₆H₄CF₃).²⁴⁰

 $C_{70}(C_6H_4CF_3)_3$ выступает в качестве аниона, подобного циклопентадиенильному.²⁴⁰ Структуры η^5 -координированных производных C_{60} и C_{70} схематически представлены на рис. 28.

Фуллерен С₈₄ симметрии D_{2d} в структурно исследованном комплексе С₈₄. Ir(CO)(Cl)(PPh₃)₂ присоединен по связи типа 6/6, расположенной на пересечении двух плоскостей симметрии. Длина координирующей связи увеличена до 1.45 Å, сферические эксцессы ее атомов углерода — до 21 и 18°.³³

Чрезвычайно интересны структура и химические свойства металлокомплексов фуллеренов, в которых атомы металла связаны с сильно модифицированным «вскрытым» углеродным каркасом с участием присоединенных функциональных групп. Так, в соединении $C_{60}C_4H_4CoCp \cdot C_7H_8$ атом кобальта координирован бисгомофуллереновым лигандом по (η^2, σ, σ) -типу (см. рис. 26, *f*).⁸² В данном соединении углеродный каркас вскрыт с образованием одиннадцатичленного цикла.

Крупные и стерически нежесткие молекулы π -комплексов фуллеренов часто допускают образование нескольких сольватов разного состава с одним и тем же растворителем, как, например, в случае комплекса $C_{60}[Ir(CO)Cl(PPhMe_2)_2]_2$ и бензола (рис. 29).²³⁵ В одном из сольватов состава $C_{60}[Ir(CO)Cl(PPhMe_2)_2] \cdot C_6H_6$ ($\rho = 2.21$) фуллереновые остовы изолированы друг от друга, а во втором сольвате состава $C_{60}[Ir(CO)Cl(PPhMe_2)_2] \cdot 2 C_6H_6$ ($\rho = 2.45$) они образуют разделенные колонки.

Кристаллические упаковки в π -комплексах фуллеренов, как и упаковки других производных, могут быть описаны в терминах мотивов из фуллереновых сфер. Особенностью данного класса является то, что в π -комплексах нефуллереновая часть, как правило, относительно велика, что часто приводит к образованию ажурных или изолированных мотивов. Исключением являются бинарные π -комплексы с палладием и платиной состава $C_{60}M_n$, отнесенные в этом обзоре к фуллеридам.

Таблица 6. Геометрические параметры координационного окружения атома иридия в π -комплексах (η^2 -фуллерен) · Ir(CO)Cl(PPh_3)_2.

Фуллерен	Ir–C, Å	Ir–CO, Å	Ir–Cl, Å	Ir–P, Å	P-Ir-P, град	Cl-Ir-CO, град	Ссылки
C ₆₀	2.190	1.923	2.401	2.384	113.4	179.7	234
C ₆₀ /2	2.171	1.852	2.410	2.330	109.8	175.8	235
C ₆₀ O	2.172	1.840	2.396	2.386	113.5	179.0	176
C ₇₀	2.182	1.834	2.362	2.384	114.9	178.8	236
C ₇₀ /2	2.176	1.838	2.366	2.356	104.2	176.1	237
C ₇₀ O	2.234	1.845	2.355	2.364	114.5	178.7	178
C ₈₄	2.197	1.824	2.418	2.376	114.7	178.4	33

Рис. 29. Упаковка молекул в кристаллах C₆₀ · [Ir(CO)Cl(PPhMe₂)₂] · C₆H₆ (*a*) и C₆₀ · [Ir(CO)Cl(PPhMe₂)₂] · 2 C₆H₆ (*b*).²³⁵

Х. Эндоэдральные соединения

Особое место среди производных фуллеренов занимают эндоэдральные фуллерены, внутри углеродного каркаса которых присутствуют «гости»: атомы металлов или неметаллов (в том числе инертных газов) либо малые кластеры. Закономерности образования таких соединений рассмотрены в обзоре²⁴¹. Эндоэдральные металлофуллерены (ЭМФ) впервые зафиксированы методом масс-спектрометрии одновременно с «полыми» фуллеренами,²⁴² а затем выделены в микрограммовых количествах.²⁴³ Однако их структурные исследования затруднены высокой реакционной способностью и наличием изомеров (см. ниже).

Нагревание «полых» фуллеренов С_n в атмосфере инертного газа А под давлением позволяет получить примесные количества эндоэдральных производных А@С_n.²⁴⁴ Соединения C_{60} с ³He (см.²⁴⁵) и ¹²⁹Xe (см.²⁴⁶) охарактеризованы спектрами ЯМР. Для С70 этим методом были также получены соединения $A_2@C_{70}$ (A = He (см.²⁴⁷) и Ne (см.²⁴⁸)) с двумя атомами инертного газа в полости фуллеренового каркаса. Соотношение продуктов А@С70 и А2@С70 указывает на «классический» механизм реакции синтеза, включающий разрыв связи С-С с последующим замыканием углеродной клетки. Рентгеноструктурный анализ твердого раствора Kr@C₆₀ в кристаллическом C₆₀·Ni(OEP)·2C₆H₆ показал, что атом криптона находится в центре фуллеренового каркаса на расстоянии 3.54 Å от атомов углерода (на 0.2 А меньшем суммы их ван-дер-ваальсовых радиусов). По результатам уточнения заселенности позиции криптона, содержание Kr@C₆₀ в монокристалле составило 9%.²⁴⁹ Соединения X@C₆₀ (где X = Li (см.²⁵⁰), N (см.²⁵¹) и P (см.²⁵²)) получены ионной бомбардировкой пленки С₆₀ в вакууме и охарактеризованы ЭПР-спектрами. Показано, что в двух последних соединениях атом элемента пятой группы не связан со стенками углеродной сферы и находится в квадруплетном электронном состоянии.

Обычным методом синтеза эндоэдральных металлофуллеренов является плазменная перегонка графита с примесью оксида соответствующего металла (1–2 ат.%) в атмосфере гелия (10–100 Тор). В масс-спектрах продуктов перегонки наряду с C_{60}^+ и C_{70}^+ присутствуют ионы MC_n^+ (где n = 60-100) с преобладанием MC_{60}^+ и MC_{82}^{+241} Экстракцией полярными

органическими растворителями либо CS_2 с последующим хроматографическим разделением получают $M@C_{82}$, $M@C_{84}$ и $M_2@C_{80}$, умеренно устойчивые на воздухе, тогда как индивидуальные $M@C_{60}$ труднее выделить ввиду их высокой реакционной способности. В настоящее время получены ЭМФ свыше 20 металлов, преимущественно лантаноидов, в количествах до нескольких миллиграммов.^{253–256}

Структурные исследования ЭМФ (как и «полых» высших фуллеренов) осложняются изомерией их углеродного каркаса.²⁵³ Квантово-химические расчеты ЭМФ выявили существенный перенос заряда с атома металла на углеродный остов, стабилизирующий более симметричные изомеры вплоть до нарушения правила изолированных пятиугольников.²⁵⁷ Расчеты с оптимизацией геометрии моноядерных металлофуллеренов М@С_n предсказывают сдвиг атома металла из центра полости к ее стенке с появлением внутриполиэдрических связывающих контактов М ... С, составляющих ~ 2.5 Å, а также значительный дипольный момент молекулы (4-5 Д). Результаты квантово-химических расчетов и спектроскопических исследований показали легкость миграции атомов металла внутри углеродного каркаса, что может дополнительно осложнять структурные исследования. 19, 253, 257, 258

Рис. 30. Строение эндоэдральных металлофуллеренов с изомерными углеродными каркасами C_{82} симметрии $C_{2\nu}(a)$ и $C_{3\nu}(b)$ (расчетные данные).²⁵³

Наиболее изученные моноядерные производные Ln@C₈₂,²⁵⁶ которые по спектроскопическим данным получены в виде смеси изомеров симметрии $C_{2\nu}$ (изомер I, содержание 70–80%) и $C_{3\nu}$ (изомер II, содержание 20–30%) (рис. 30). В производных некоторых металлов зафиксированы также изомеры III (Ег, Dy, Tm, Ca) и IV (Ca).^{256, 259} Поэтому чтобы избежать статической разупорядоченности, процесс получения чистых металлофуллеренов для структурных исследований должен включать трудоемкое хроматографическое разделение смеси изомеров.

Экспериментальные структурные данные для большинства эндоэдральных фуллеренов получены методами XAFSспектроскопии $^{260-264}$ и порошковой рентгеновской дифракции на синхротронном излучении. Положение и форма края полосы поглощения в рентгеновских спектрах (XANES) подтверждают внутримолекулярный перенос электрона с атома-«гостя» металла на углеродную оболочку кластера. В EXAFS-исследованиях Y@C₈₂ (см.²⁶¹) и La@C₈₂ (см.²⁶²) были впервые установлены сдвиг атома металла из центра фуллереновой полости и его координация с атомами углерода. Моноядерные эндоэдральные фуллерены на основе актиноидов (Th, U и др.)²⁶⁵ имеют углеродный остов C₈₂-C₈₄; по данным метода XANES, заряд иона металла в них равен 3+.

Систематические дифракционные исследования, проведенные Таката и соавт., 85, 264-270 позволили определить методом максимальной энтропии (МЕМ) основные черты кристаллической и молекулярной структуры серии поликристаллических ЭМФ. Во всех случаях было объективно выявлено вхождение атомов металла в полость углеродного каркаса. Сообщалось также, что в биядерном Sc2@C66 геометрия углеродной оболочки, в согласии с квантово-химическими расчетами, не удовлетворяет правилу изолированных пятиугольников.¹⁵ В сильно разупорядоченной кристаллической структуре $Sc_2C_2@C_{84}$ (см.²⁷¹) внутри углеродной оболочки обнаружен карбидный кластер с атомами углерода на расстоянии 1.42(6) Å друг от друга. Значения расстояний металл-металл в биядерных La₂@C₈₀ (3.90-3.94 Å)²⁷¹ и $Sc_2 @C_{84} (3.91 \text{ Å})^{-268}$ свидетельствуют об отсутствии связи металл-металл, тогда как в Sc₂@C₆₆ внутри полости меньшего размера обнаружена связь Sc-Sc 2.89 Å.15 В то же время в сольвате трехъядерного $Sc_3@C_{82}$ с толуолом (1:1) из-за вероятной ротационной разупорядоченности молекул ЭМФ найдены аномально короткие расстояния Sc-Sc 2.3(3) Å (см.²⁷⁰) (против 3.20-3.30 Å в металлическом скандии 272), не согласующиеся с результатами квантово-химического расчета. 257 Представленные в работах 15, 85, 270, 272 оценки заряда эндоэдральных фрагментов интегрированием электронной плотности, полученной в МЕМ, также вызывают возражения как выходящие за пределы точности метода порошковой рентгенографии. Однако в целом в XRD-исследованиях ЭМФ получена важная структурная информация на полуколичественном уровне.

Опубликованы результаты монокристального PCA серии эндоэдральных фуллеренов $M_3N@C_n$ (где M = Sc, Er; n = 78, 80, 68) с плоскими треугольными металл-нитридными кластерами внутри углеродной оболочки.^{16, 273–275} Эти соединения были синтезированы плазменным методом в динамической атмосфере, содержащей N_2 , и кристаллизованы в виде молекулярных комплексов (1:1) с октаэтилпорфиринатом кобальта CoOEP и сольватными молекулами растворителя. В их структурах обнаружены короткие межмолекулярные контакты Co···C (фуллерен) 2.71–2.78 Å и сильная ротационная разупорядоченность как углеродных каркасов, так и внутренних плоскотригональных фрагментов-«гостей» M_3N . В работах ^{273–275} установлены строение высокосимметричных углеродных оболочек C_{78} (D_{3h}) и C_{80} (I_h), стабилизированных переносом заряда от атомов металла, и

Рис. 31. Строение молекулы Sc₃N@C₈₀ (данные PCA).²⁷³ Расстояния Sc-N 2.00-2.01, Sc-C 2.15-2.73, Sc-Sc 3.48 Å.

геометрия фрагмента M₃N (рис. 31), а также отмечена лабильность связывания М ... С с углеродным каркасом. Теми же авторами получено и структурно охарактеризовано диметоксибензодиметиленовое производное Sc₃N@C₈₀Dmbdm (см. табл. 2), в котором фуллереновый скелет химически модифицирован с внешней стороны посредством [4+2]циклоприсоединения по связи типа 5/6 с удлинением этой связи до 1.63 Å. В этом соединении эндоэдральная группировка также разупорядочена.²⁷⁶ Обнаружено, что в случае остова С78 атомы металла, в согласии с расчетными данными, 277 располагаются преимущественно над связями 6/6 в пирациленовых фрагментах, а в случае С80, углеродный скелет которого не имеет таких фрагментов, наблюдается более сильная разупорядоченность группировки М₃N. Эндоэдральный фуллерен меньшего размера С68, выделенный и исследованный РСА в составе аналогичного комплекса. по-видимому, имеет углеродный скелет. нарушающий правило изолированных пятиугольников. Как фуллереновый каркас, так и внутриполиэдрическая группировка сильно разупорядочены;¹⁶ стехиометрия ЭМФ доказана методом масс-спектрометрии.

Кристаллическая структура молекулярного комплекса $Er_2@C_{82} \cdot CoOEP \cdot (C_6H_6)_{2-x} \cdot (CHCl_3)_x$ исследована в работе ²⁷⁸. Показано, что углеродный остов в этом металлофуллерене представляет собой изомер симметрии C_s , а атомы эрбия разупорядочены по многочисленным позициям. Позднее был выделен и исследован в составе аналогичного комплекса второй изомер того же эндоэдрального металлофуллерена, с углеродным остовом симметрии C_{3y} и также сильно разупорядоченным металлическим ядром.²⁷⁹

Несольватированные ЭМФ при комнатной температуре имеют разупорядоченную ГЦК-решетку, 280 изоморфную высокотемпературным модификациям С₆₀ и С₇₀. Медленное охлаждение монокристалла La@C₈₂ приводит к ориентационному упорядочению эллипсоидальных молекул ЭМФ с переходами в ромбоэдрическую (180-150 К) и метастабильную триклинную модификации (150-20 К). При быстром охлаждении ромбоэдрического полиморфа образуется разупорядоченная простая кубическая фаза, стабильная ниже $132 \, K.^{280}$ B сильно разупорядоченных сольватах М@С82 · 1.5 СS2 молекулы сероуглерода занимают пустоты ОЦК-решетки; при 150 К зафиксирован магнитный фазовый переход, который можно объяснить ориентационным упорядочением фуллереновых остовов.²⁸¹ Эндоэдральные производные фуллеренов, как и чистые фуллерены, могут полимеризоваться под давлением.²⁸²

По данным метода порошковой рентгеновской дифракции моноклинные толуольные сольваты $M@C_{82}$ · PhMe изоморфны аналогичным сольватам «пустых» высших фуллеренов C_{82} · PhMe и C_{76} · x PhMe.³¹ Мотив расположения фуллереновых остовов в них совпадает с найденным ранее для сольватов (1:1) бакминстерфуллерена С₆₀ с *н*-пентаном, дихлорэтаном и другими растворителями⁸⁴ (см. рис. 6), а межмолекулярные электростатические взаимодействия стабилизируют упаковку молекул «голова к хвосту».²⁶⁷ В кристаллах M₃N@C₈₀ · CoOEP · Solv обнаружены зигзагообразные цепочки, подобные цепочкам в молекулярных комплексах C₆₀ и C₇₀ с металлопорфиринами (см. рис. 8). Ближайшие расстояния между центрами фуллереновых остовов в исследованных ЭМФ лежат в интервале 11.00–11.22 Å.

XI. Заключение

Характерные черты кристаллохимии фуллеренов в основном определяются присутствием в них крупных кластеров углерода, форма которых близка к сферической, и преобладанием невалентных межмолекулярных взаимодействий. Данные структурных исследований различных производных фуллеренов, включая химически модифицированные и эндоэдральные, показывают характерную разупорядоченность углеродного полиэдра (уменьшающуюся с понижением температуры), склонность к образованию молекулярных кристаллов и разнообразие кристаллических фаз. Наблюдаемые мотивы ротационной разупорядоченности молекул С_n в кристалле удается описать в рамках модели «резиновой полости», постулирующей их нахождение в неглубоких потенциальных минимумах. Во всех рассмотренных классах соединений наблюдаются сходные мотивы расположения фуллереновых остовов, определяемые в первую очередь долей занимаемого ими объема в общем объеме кристалла. Нефуллереновые молекулы и экзополиэдрические фрагменты заполняют пустоты в таких мотивах, выступающих в роли лабильной ван-дер-ваальсовой матрицы.

Кулоновское притяжение (в ионных фуллеридах) и специфическое межмолекулярное связывание стабилизируют кристаллическую упаковку производных фуллеренов, повышая степень ее упорядоченности и точность дифракционного иследования соответствующих кристаллических структур. В ряде работ отмечены слабые ян-теллеровские искажения моно- и дианионов бакминстерфуллерена С₆₀, а также повышенная склонность анионных фуллереновых каркасов к полимеризации. В результате химического связывания молекул фуллеренов друг с другом возникают димеры и тримеры, а также бесконечные цепочечные, слоевые и каркасные мотивы из углеродных остовов.

В эндоэдральных фуллеренах наличие атомов-«гостей» внутри фуллеренового остова способно как стабилизировать кристаллическую упаковку (ввиду поляризации углеродных кластеров), так и усиливать их разупорядочение (за счет различных положений атомов и/или их динамических переходов внутри каркаса). В эндоэдральных металлофуллеренах, по квантово-химическим и спектроскопическим данным, наблюдается внутримолекулярный перенос электронов металл-каркас, стабилизирующий более симметричные изомеры углеродной оболочки. Появление таких новых степеней свободы, как дипольный момент молекулы и магнитные моменты атомов-«гостей», увеличивает число возможных типов упорядочения и соответствующих им фазовых переходов.

Для химически модифицированных фуллеренов (как в σ -, так и в π -производных) типично присоединение к связи 6/6, сопровождаемое ее удлинением и однотипными искажениями углеродного остова, локализованными в ближайшем окружении экзополиэдрически координированных атомов. Для молекул С₇₀ предпочтительна координация по стереохимически напряженной связи 6/6 (тип *b*), при которой атомы углерода наиболее пирамидализованы. Для некоторых производных С₆₀ и С₇₀ также установлено присоединение по связям 5/6 с разрывом этих связей и образованием «приоткрытых» гомофуллереновых каркасов. По сравнению с кристаллами немодифицированных фуллеренов функционализированные производные фуллеренов обычно лучше упорядочены ввиду несферической формы их молекул.

Многократное присоединение (как по σ, σ -, так и по η²-типу) экзополиэдрических фрагментов, не взаимодействующих друг с другом, протекает по наиболее удаленным связям 6/6 вплоть до образования (в случае С₆₀) гексааддуктов с октаэдрическим окружением фуллеренового остова. Для экзополиэдрических кластеров характерна многоцентровая координация атомов переходного металла, соединенных связями М-М, по 6-атомной грани углеродного полиэдра, тогда как π-координация σ-модифицированного фуллерена одиночным атомом металла может также проходить по типам η^5 - и, возможно, η^6 -связывания. Многократное σ-присоединение относительно небольших экзополиэдрических фрагментов X дает «бинарные» производные $C_n X_m$ (n = 60,70; X = H, O, F, Cl, Br, Me, CF₃). При небольшом числе m (до 5–6) присоединенные фрагменты Х обычно группируются в определенной части углеродного остова, тогда как углубление химической модификации сопровождается распределением Х по фуллереновой полусфере (C₆₀F₁₈ и его аналоги) либо по всей сфере (C₆₀Br₂₄, C₆₀F₃₆, C₆₀F₄₈). Глубокая химическая модификация фуллеренов приводит к сильным искажениям их полиэдрических каркасов и может сопровождаться раскрытием углеродной клетки.

Настоящий обзор структурных данных — результат работ по фуллереновой тематике, проведенных авторами со второй половины 1990-х гг. Мы благодарны всем коллегам, предоставившим нам кристаллы синтезированных ими соединений, а также познакомившим с результатами собственных структурных исследований, нередко до их появления в печати. Особую признательность хотелось бы выразить члену-корреспонденту М.Ю.Антипину (ИНЭОС РАН, Москва), профессорам Г.Саито (University of Kyoto, Япония), О.Кашино и И.Кубозоно (Окауата University, Япония), Р.Н.Любовской (ИПФХ РАН), М.В.Коробову, О.В.Болталиной (Химический факультет МГУ), Дж.Ховард (University of Durham, UK) и Р.Тейлору (University of Sussex, UK), а также к.х.н. Д.В.Конареву (ИПХФ РАН).

Обзор написан при финансовой поддержке Российской программы «Фуллерены и атомные кластеры» и Российского фонда фундаментальных исследований (проект № 02-03-33225) и регулярным международным конференциям IWFAC в Санкт-Петербурге.

Литература

- 1. Fullerenes: Chemistry, Physics, and Technology. (Eds K.M.Kadish, R.S.Ruoff). Wiley, New York, 2000
- 2. O.A.Dyachenko, A.Graja. Fullerene Sci. Technol., 7 (3), 317 (1999)
- 3. Д.В.Конарев, Р.Н.Любовская. Успехи химии, 68, 23 (1999)
- Н.Ф.Гольдшлегер, А.П.Моравский. Успехи химии, 66, 353 (1997)
- 5. B.Sundqvist. Adv. Phys., 48 (1), 1 (1999)
- 6. A.L.Balch, M.M.Olmstead. Chem. Rev., 98, 2123 (1998)
- 7. E.Osawa. Kagaku (Kyoto), 25, 854 (1970)
- 8. Д.А.Бочвар, Е.Г.Гальперн. Докл. АН СССР, 209, 610 (1973)
- 9. H.W.Kroto, J.R.Heath, S.C.O'Brien, R.F.Curl, R.E.Smalley. *Nature (London)*, **318**, 162 (1985)
- W.Kraetschmer, L.D.Lamb, K.Fostiropoulos, D.R.Huffman. Nature (London), 347, 354 (1990)
- 11. J.C.Gallucci, C.W.Doecke, L.A.Paquette. J. Am. Chem. Soc., 108, 1343 (1986)
- H.Prinzbach, A.Weller, P.Landenberger, F.Wahl, J.Worth, L.T.Scott, M.Gelmont, D.Olevano, B.von Issendorff. *Nature* (*London*), 407, 60 (2000)
- 13. C.Piskotti, J.Yarger, A.Zettl. Nature (London), 393, 771 (1998)

- 14. D.Bakowies, W.Thiel. J. Am. Chem. Soc., 113, 3704 (1991)
- C.-R.Wang, T.Kai, T.Tomiyama, T.Yoshida, Y.Kobayashi,
 E.Nishibori, M.Takata, M.Sakata, H.Shinohara. *Nature (London)*,
 408, 426 (2000)
- M.M.Olmstead, H.M.Lee, J.C.Duchamp, S.Stevenson, D.Marciu, H.C.Dorn, A.L.Balch. Angew. Chem., Int. Ed., 42, 900 (2003)
- 17. A.Rassat, I.Laszlo, P.W.Fowler. Chem.-Eur. J., 9, 644 (2003)
- 18. P.W.Fowler, D.E.Manolopoulos. Nature (London), 355, 428 (1992)
- S.Nagase, K.Kobayashi, T.Akasaka, T.Wakahara. In *Fullerenes:* Chemistry, Physics and Technology. (Eds K.M.Kadish, R.S.Ruoff). Wiley, New York, 2000. P. 395
- 20. M.D.Diener, J.M.Alford. Nature (London), 393, 668 (1998)
- V.I.Kovalenko, A.R.Khamatgalimov. Chem. Phys. Lett., 377, 263 (2003)
- 22. R.D.Johnson, G.Meijer, D.S.Bethune. J. Am. Chem. Soc., **112**, 8983 (1990)
- K.Hedberg, L.Hedberg, D.S.Bethune, C.A.Brown, H.C.Dorn, R.D.Johnson, M.De Vries. *Science*, 254, 410 (1991)
- R.Tycko, R.C.Haddon, G.Dabbagh, S.H.Glarum, D.C.Douglas, A.M.Mujsce. J. Phys. Chem. B, 95, 518 (1991)
- K.Hedberg, L.Hedberg, M.Buhl, D.S.Bethune, C.A.Brown, R.D.Johnson. J. Am. Chem. Soc., 119, 5314 (1997)
- H.B.Burgi, P.Venugopalan, D.Schwarzenbach, F.Diederich, C.Thilgen. *Helv. Chim. Acta*, 76, 2155 (1993)
- 27. R.H.Michel, M.M.Kappes, P.Adelmann, G.Roth. Angew. Chem., Int. Ed. Engl., 33, 1651 (1994)
- F.Diederich, R.L.Whetten, C.Thilgen, R.Ettl, I.Chao, M.M.Alvarez. Science, 254, 1768 (1991)
- F.H.Hennrich, R.H.Michel, A.Fischer, S.R.Schneider, S.Gilb, M.M.Kappes, D.Fuchs, M.Burk, K.Kobayashi, S.Nagase. *Angew. Chem., Int. Ed. Engl.*, 35, 1732 (1996)
- C.-R.Wang, T.Sugai, T.Kai, T.Tomiyama, H.Shinohara. J. Chem. Soc., Chem. Commun., 557 (2000)
- H.Kawada, Y.Fujii, H.Nakao, Y.Murakami, T.Watanuki, H.Suematsu, K.Kikuchi, Y.Achiba, I.Ikemoto. *Phys. Rev., Sect. B*, 51, 8723 (1995)
- 32. T.J.S.Dennis, M.Hulman, H.Kuzmany, H.Shinohara. J. Phys. Chem. B, 104, 5411 (2000)
- A.L.Balch, A.S.Ginwalla, J.W.Lee, B.C.Noll, M.M.Olmstead. J. Am. Chem. Soc., 116, 2227 (1994)
- 34. G.Y.Sun. Chem. Phys. Lett., 367 (1-2), 26 (2003)
- 35. N.Tagmatarchis, D.Arcon, M.Prato, H.Shinohara. J. Chem. Soc., Chem. Commun., 2992 (2002)
- 36. V.Mordkovich, Y.Shiratori, H.Hiraoka, Y.Takeuchi. *Phys. Solid State*, **44**, 603 (2002)
- C.Brown, L.Cristofolini, K.Kordatos, K.Prassides, C.Bellavia, R.Gonzalez, M.Keshavarz, F.Wudl, A.Cheetham, J.Zhang, W.Andreoni, A.Curioni, A.Fitch, P.Pattison. *Chem. Mater.*, 8, 2548 (1996)
- 38. K.-C.Kim, F.Hauke, A.Hirsch, P.D.W.Boyd, E.Carter, R.S.Armstrong, P.A.Lay, C.A.Reed. J. Am. Chem. Soc., 125, 4024 (2003)
- P.A.Cox. The Electronic Structure and Chemistry of Solids. Oxford University Press, Oxford, 1981
- M.J.Hardie, R.Torrens, C.L.Raston. J. Chem. Soc., Chem. Commun., 1854 (2003)
- M.V.Korobov, E.B.Stukalin, A.L.Mirakyan, I.S.Neretin, Y.L.Slovokhotov, A.V.Dzyabchenko, A.I.Ancharov, B.P.Tolochko. *Carbon*, **41** (14), 2743 (2003)
- A.L.Litvinov, D.V.Konarev, A.Y.Kovalevsky, I.S.Neretin, Y.L.Slovokhotov, P.Coppens, R.N.Lyubovskaya. Cryst. Eng. Commun., 4, 618 (2002)
- D.V.Konarev, I.S.Neretin, G.Saito, Y.L.Slovokhotov, A.Otsuka, R.N.Lyubovskava. J. Chem. Soc., Dalton Trans., 3886 (2003)
- D.V.Konarev, I.S.Neretin, Y.L.Slovokhotov, A.L.Litvinov, A.Otsuka, R.N.Lyubovskaya, G.Saito. Synth. Met., 131, 87 (2002)
- D.V.Konarev, A.Y.Kovalevsky, X.Li, I.S.Neretin, A.L.Litvinov, N.V.Drichko, Y.L.Slovokhotov, P.Coppens, R.Lyubovskaya. *Inorg. Chem.*, 41, 3638 (2002)
- D.V.Konarev, I.S.Neretin, Y.L.Slovokhotov, R.N.Lyubovskaya, D.S.Yufit, J.A.K.Howard. Cryst. Growth Des., (in the press) (2003)

- D.V.Konarev, I.S.Neretin, G.Saito, Y.L.Slovokhotov, A.Otsuka, R.N.Lyubovskaya. *Eur. J. Inorg. Chem.*, 1794 (2004)
- S.I.Troyanov, A.A.Popov, N.I.Denisenko, O.V.Boltalina, L.N.Sidorov, E.Kemnitz. Angew. Chem., Int. Ed., 42, 2395 (2003)
- E. Nakamura, K. Tahara, Y. Matsuo, M. Sawamura. J. Am. Chem. Soc., 125, 2834 (2003)
- W.Qian, S.-C.Chuang, R.B.Amador, T.Jarrosson, M.Sander, S.Pieniazek, S.I.Khan, Y.Rubin. J. Am. Chem. Soc., 125, 2066 (2003)
- A.V.Usatov, E.V.Martynova, F.M.Dolgushin, A.S.Peregudov, M.Y.Antipin, Y.N.Novikov. *Eur. J. Inorg. Chem.*, 1, 29 (2003)
- T.Takenobu, D.H.Chi, S.Margadonna, K.Prassides, Y.Kubozono, A.N.Fitch, K.Kato, Y.Iwasa. J. Am. Chem. Soc., 125, 1897 (2003)
- S.Liu, Y.-J.Lu, M.M.Kappes, J.A.Ibers. *Science*, **254**, 408 (1991)
 W.I.F.David, R.M.Ibberson, T.J.S.Dennis, J.P.Hare, K.Prassides.
- Europhys. Lett., 18, 219 (1992)
 55. W.I.F.David, R.M.Ibberson, J.C.Matthewman, K.Prassides, T.J.S.Dennis, J.P.Hare, H.W.Kroto, R.Taylor, D.R.M.Walton. Nature (London), 353, 147 (1991)
- 56. А.Уэллс. Структурная неорганическая химия. Мир, Москва, 1987
- H.-B.Burgi, E.Blanc, D.Schwarzenbach, S.Liu, Y.Lu, M.M.Kappes, J.A.Ibers. *Angew. Chem., Int. Ed. Engl.*, **31**, 640 (1992)
- J.L.de Boer, S.Vansmaalen, V.Petricek, M.Dusek, M.A.Verheijen, G.Meijer. Chem. Phys. Lett., 219, 469 (1994)
- E.V.Skokan, I.V.Arkhangelskii, N.A.Zhukova, Y.A.Velikodnyi, N.B.Tamm, N.V.Chelovskaya. *Carbon*, 41, 1387 (2003)
- J.M.Hawkins, T.A.Lewis, S.D.Loren, A.Meyer, J.R.Heath, R.J.Saykally, F.J.Hollander. J. Chem. Soc., Chem. Commun., 775 (1991)
- A.P.Isakina, A.I.Prokhvatilov, M.A.Strzhemechny, K.A.Yagotintsev. *Low Temp. Phys.*, 27, 1037 (2001)
- J.F.Armbruster, H.A.Romberg, P.Schweiss, P.Adelmann, M.Knupfer, J.Fink, R.H.Michel, J.Rockenberger, F.Hennrich, H.Schreiber, M.M.Kappes. Z. Phys. B, 95, 469 (1994)
- R.Almairac, D.Tranqui, J.P.Lauriat, J.Lapasset, J.Moret. Solid State Commun., 106, 437 (1998)
- 64. А.И.Китайгородский. *Молекулярные кристаллы*. Наука, Москва, 1971
- Y.L.Slovokhotov, I.V.Moskaleva, V.I.Shilnikov, E.F.Valeev, Y.N.Novikov, A.I.Yanovsky, Y.T.Struchkov. *Mol. Cryst. Liq. Cryst.*, 8, 117 (1996)
- R.Ceolin, V.Agafonov, D.Andre, A.Dworkin, H.Szwarc, J.Dugue, B.Keita, L.Nadjo, C.Fabre, A.Rassat. *Chem. Phys. Lett.*, **208**, 259 (1993)
- 67. M.Jansen, G.Waidmann. Z. Anorg. Allg. Chem., 621, 14 (1995)
- M.Barrio, D.O.Lopez, J.L.Tamarit, P.Espeau, R.Ceolin, H.Allouchi. *Chem. Mater.*, 15, 288 (2003)
- 69. R.S.Ruoff, R.Malhotra, D.L.Huestis, D.S.Tse, D.C.Lorents. *Nature (London)*, **362**, 140 (1993)
- Справочник химика. Т. 3. (Под ред. Б.П.Никольского). Химия, Москва; Ленинград, 1964
- V.N.Bezmelnitsin, A.V.Eletskii, E.V.Stepanov. J. Phys. Chem. B, 98, 6665 (1994)
- М.Коробов, А.Миракьян, Н.Авраменко, Р.С.Руофф. Докл. АН, 349, 346 (1996)
- A.Smith, E.Walter, M.V.Korobov, O.L.Gurvich. J. Phys. Chem. B, 100, 6775 (1996)
- M.Korobov, A.L.Mirakyan, N.V.Avramenko, G.Olofsson, A.L.Smith, R.S.Ruoff. J. Phys. Chem. B, 103, 1339 (1999)
- N.Sivaraman, R.Dhamodaran, I.Kaliappan, T.G.Srinivasan, P.R.V.Rao, C.K.Mathews. *Fullerene Sci. Technol.*, 2, 233 (1994)
- M.Ramm, P.Luger, W.Duczek, J.C.A.Boyens. Cryst. Res. Technol., 31, 43 (1996)
- G.Oszlanyi, G.Bortel, G.Faigel, S.Pekker, M.Tegze. Solid State Commun., 89, 417 (1994)
- M.Ramm, P.Luger, M.Strumpel, G.Beurskens, J.Averdung, J.Mattay. Z. Kristallogr., 213, 69 (1998)
- R.E.Douthwaite, M.L.H.Green, S.J.Heyes, M.J.Rosseinsky, J.F.C.Turner. J. Chem. Soc., Chem. Commun., 1367 (1994)

- M.F.Meidine, P.B.Hitchcock, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Chem. Commun., 1534 (1992)
- T.Ishii, N.Aizawa, M.Yamashita, H.Matsuzaka, T.Kodama, K.Kikuchi, I.Ikemoto, Y.Iwasa. J. Chem. Soc., Dalton Trans., 4407 (2000)
- M.M.Olmstead, D.A.Costa, K.Maitra, B.C.Noll, S.L.Phillips, P.M.V.Calcar, A.L.Balch. J. Am. Chem. Soc., 121, 7090 (1999)
- N.V.Avramenko, A.L.Mirakyan, I.S.Neretin, Y.L.Slovokhotov, M.V.Korobov. *Thermochim. Acta*, 344, 23 (2000)
- R.M.Fleming, A.R.Kortan, B.Hessen, T.Siegrist, F.A.Thiel, P.Marsh, R.C.Haddon, R.Tycko, G.Dabbagh, M.L.Kaplan, A.M.Mujsce. *Phys. Rev., Sect. B*, 44, 888 (1991)
- E.Nishibori, M.Takata, M.Sakata, M.Inakuma, H.Shinohara. Chem. Phys. Lett., 298, 79 (1998)
- M.V.Korobov, A.L.Mirakian, N.V.Avramenko, E.F.Valeev, I.S.Neretin, Y.L.Slovokhotov, A.L.Smith, G.Oloffson, R.S.Ruoff. J. Phys. Chem. B, 102, 3712 (1998)
- J.D.Crane, P.B.Hitchcock, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Chem. Commun., 1764 (1992)
- D.V.Konarev, E.F.Valeev, Y.L.Slovokhotov, R.N.Lyubovskaya. J. Phys. Chem. Solids, 58, 1865 (1997)
- R.A.Assink, J.E.Schirber, D.A.Loy, B.Morosin, G.A.Carlson. J. Mater. Res., 7, 2136 (1992)
- Л.И.Буравов, О.А.Дьяченко, С.В.Коновалихин, Н.Д.Кущ, И.П.Лаврентьев, Н.Г.Спицына, Г.В.Шилов, Э.Б.Ягубский. Изв. АН. Сер. хим., 262 (1994)
- 91. С.В.Коновалихин, О.А.Дьяченко, Г.В.Шилов, Н.Г.Спицына, К.В.Ван, Э.Б.Ягубский. Изв. АН. Сер. хим., 1480 (1997)
- D.V.Konarev, E.F.Valeev, Y.L.Slovokhotov, Y.M.Shul'ga, R.N.Lyubovskaya. J. Chem. Res., 442, 2647 (1997)
- D.V.Konarev, I.S.Neretin, Y.L.Slovokhotov, E.I.Yudanova, N.V.Drichko, Y.M.Shul'ga, B.P.Tarasov, L.L.Gumanov, A.S.Batsanov, J.A.K.Howard, R.N.Lyubovskaya. *Chem. Eur. J.*, 7, 2605 (2001)
- 94. J.L.Atwood, M.J.Barnes, M.G.Gardiner, C.L.Raston. J. Chem. Soc., Chem. Commun., 1449 (1996)
- A.Izuoka, T.Tachikawa, T.Sugawara, Y.Suzuki, M.Konno, Y.Saito, H.Shinohara. J. Chem. Soc., Chem. Commun., 1472 (1992)
- 96. O.Ermer, C.Robke. J. Am. Chem. Soc., 115, 10077 (1993)
- 97. С.И.Троянов, Э.Кемниц. Журн. неорг. химии, 46, 1704 (2001)
- 98. M.M.Olmstead, A.S.Ginwalla, B.C.Noll, D.S.Tinti, A.L.Balch. J. Am. Chem. Soc., 118, 7737 (1996)
- 99. M.M.Olmstead, K.Maitra, A.L.Balch. Angew. Chem., Int. Ed., 38, 231 (1999)
- D.Konarev, V.Semkin, R.Lyubovskaya, A.Graja. Synth. Met., 88, 225 (1997)
- D.V.Konarev, A.Y.Kovalevsky, P.Coppens, R.N.Lyubovskaya. J. Chem. Soc., Chem. Commun., 2357 (2000)
- 102. A.Otsuka, G.Saito, A.A.Zakhidov, K.Yakushi. Synth. Met., 85, 1459 (1997)
- 103. E.M.Veen, P.M.Postma, H.T.Jonkman, A.L.Spek, B.L.Feringa. J. Chem. Soc., Chem. Commun., 1709 (1999)
- 104. K.Tashiro, T.Aida, J.-Y.Zheng, K.Kinbara, K.Saigo, S.Sakamoto, K.Yamaguchi. J. Am. Chem. Soc., 121, 9477 (1999)
- 105. J.-Y.Zheng, K.Tashiro, Y.Hirabayashi, K.Kinbara, K.Saigo, T.Aida, S.Sakamoto, K.Yamaguchi. *Angew. Chem.*, *Int. Ed.*, 40, 1858 (2001)
- 106. D.Sun, F.S.Tham, C.A.Reed, L.Chaker, M.Burgess, P.D.W.Boyd. J. Am. Chem. Soc., 122, 10704 (2000)
- 107. D.R.Evans, N.L.P.Fackler, Z.Xie, C.E.F.Rickard, P.D.W.Boyd, C.A.Reed. J. Am. Chem. Soc., **121**, 8466 (1999)
- 108. T.Ishii, R.Kanehama, N.Aizawa, M.Yamashita, H.Matsuzaka, K.Sugiura, H.Miyasaka, T.Kodama, K.Kikuchi, I.Ikemoto, H.Tanaka, K.Marumoto, S.Kuroda. J. Chem. Soc., Dalton Trans., 2975 (2001)
- 109. T.Andersson, K.Nilsson, M.Sundahl, G.Westman, O.Wennerstrom. J. Chem. Soc., Chem. Commun., 604 (1992)
- I.S.Neretin, Y.L.Slovokhotov. In *IWFAC-2003. (Abstracts of Reports)*. Petersburg, 2003. P. 37
- 111. A.Marucci, P.Launois, R.Moret, A.Penicaud. *Eur. Phys. J. B*, **26**, 29 (2002)

- A.Penicaud, A.Perez-Benitez, R.V.Gleason, E.P.Munoz, R.Escudero. J. Am. Chem. Soc., 115, 10392 (1993)
- 113. K.Himmel, M.Jansen. Eur. J. Inorg. Chem., 1183 (1998)
- 114. H.Brumm, M.Jansen. Z. Anorg. Allg. Chem., 627, 1433 (2001)
- 115. K.Himmel, M.Jansen. J. Chem. Soc., Chem. Commun., 1205 (1998)
- 116. C.Janiak, S.Muhle, H.Hemling, K.Kohler. *Polyhedron*, **15**, 1559 (1996)
- 117. T.F.Fassler, A.Spiekermann, M.E.Spahr, R.Nesper. Angew. Chem., Int. Ed., 36, 486 (1997)
- 118. C.A.Reed, R.D.Bolskar. Chem. Rev., 100, 1075 (2000)
- 119. L.Echegoyen, L.E.Echegoyen. Acc. Chem. Res., 31, 593 (1998)
- 120. P.M.Allemand, K.C.Khemani, A.Koch, F.Wudl, K.Holczer,
- S.Donovan, G.Gruner, J.D.Thompson. *Science*, **253**, 301 (1991) 121. V.Buntar, H.W.Weber, M.Ricco. *Solid State Commun.*, **98**, 175 (1995)
- 122. P.Paul, Z.Xie, R.Bau, P.D.W.Boyd, C.A.Reed. J. Am. Chem. Soc., 116, 4145 (1994)
- 123. A.M.Panich, H.M.Vieth, P.K.Ummat, W.R.Datars. *Physica B:* Condens. Matter, **327**, 102 (2003)
- 124. S.E.Canton, A.J.Yencha, E.Kukk, J.D.Bozek, M.C.A.Lopes, G.Snell, N.Berrah. Phys. Rev. Lett., 89, 045502 (2002)
- 125. Q.Zhu, O.Zhou, J.E.Fischer, A.R.McGhie, W.J.Romanow, R.M.Strongin, M.A.Cichy, A.B.Smith. *Phys. Rev., Sect. B*, 47, 13948 (1993)
- 126. P.W.Stephens, L.Mihaly, P.L.Lee, R.L.Whetten, S.M.Huang, R.Kaner, F.Deiderich, K.Holczer. *Nature (London)*, **351**, 632 (1991)
- 127. O.Zhou, J.E.Fischer, N.Coustel, S.Kycia, Q.Zhu, A.R.McGhie, W.J.Romanow, J.P.M.Junior, A.B.Smith, D.E.Cox. *Nature* (*London*), **351**, 462 (1991)
- 128. R.M.Fleming, M.J.Rosseinsky, A.P.Ramirez, D.W.Murphy, J.C.Tully, R.C.Haddon, T.Siegrist, R.Tycko, S.H.Glarum, P.Marsh, G.Dabbagh, S.M.Zahurak, A.V.Makhija, C.Hampton. *Nature (London)*, **352**, 701 (1991)
- 129. T.Shiroka, M.Ricco, F.Barbieri, E.Zannoni, M.Tomaselli. *Phys. Solid State*, **44**, 521 (2002)
- 130. A.F.Hebard, M.J.Rosseinsky, R.C.Haddon, D.W.Murphy, S.H.Glarum, T.T.M.Palstra, A.P.Ramirez, A.R.Kortan. *Nature* (*London*), **350**, 600 (1991)
- R.M.Fleming, A.P.Ramirez, M.J.Rosseinsky, D.W.Murphy, R.C.Haddon, S.M.Zahurak, A.V.Makhija. *Nature (London)*, 352, 787 (1991)
- 132. K.Tanigaki, T.W.Ebbesen, S.Saito, J.Mizuki, J.S.Tsai, Y.Kubo, S.Kuroshima. *Nature (London)*, **352**, 222 (1991)
- 133. Z.Iqbal, R.H.Baughman, B.L.Ramakrishna, S.Khare, N.S.Murthy, H.J.Bornemann, D.E.Morris. *Science*, 254, 826 (1991)
- 134. J.H.Schön, C.Kloc, B.Batlogg. Science, 293, 2432 (2001)
- 135. M.Beasley, H.Kroemer, H.Kogelnik, D.Monroe, S.Datta. Report of the Investigation Committee on the Possibility of Scientific Misconduct in the Work of Hendrik Schön and coauthors. Lucent Technologies, http://www.lucent.com/press/0902/020925.bla.html
- 136. K.Tanigaki, I.Hirosawa, T.Manako, J.S.Tsai, J.Mizuki, T.W.Ebbesen. Phys. Rev., Sect. B, 49, 12307 (1994)
- 137. T.Yildirim, L.Barbedette, J.E.Fischer, G.M.Bendele, P.W.Stephens, C.L.Lin, C.Goze, F.Rachdi, J.Robert, P.Petit, T.T.M.Palstra. *Phys. Rev., Sect. B*, 54, 11981 (1996)
- S.Margadonna, E.Aslanis, W.Z.Li, K.Prassides, A.N.Fitch, T.C.Hansen. *Chem. Mater.*, **12**, 2736 (2000)
- 139. A.R.Kortan, N.Kopylov, S.Glarum, E.M.Gyorgy, A.P.Ramirez, R.M.Fleming, F.A.Thiel, R.C.Haddon. *Nature (London)*, **355**, 529 (1992)
- 140. A.R.Kortan, N.Kopylov, S.Glarum, E.M.Gyorgy, A.P.Ramirez, R.M.Fleming, O.Zhou, F.A.Thiel, P.L.Trevor, R.C.Haddon. *Nature (London)*, **360**, 566 (1992)
- 141. E.Ozdas, A.R.Kortan, N.Kopylov, A.P.Ramirez, T.Siegrist, K.M.Rabe, H.E.Bair, S.Schuppler, P.H.Citrin. *Nature (London)*, 375, 126 (1995)
- 142. D.Claves, Y.Ksari-Habiles, G.Chouteau, P.Touzain. Solid State Commun., **106**, 431 (1998)
- 143. D.Claves, A.Hamwi. Solid State Commun., 113, 357 (1999)

- 144. Z.Sun, X.H.Chen, T.Takenobu, Y.Iwasa. J. Phys.: Condens. Matter, **12**, 8919 (2000)
- 145. J.Arvanitidis, K.Papagelis, S.Margadonna, K.Prassides, A.Fitch. *Nature (London)*, 425, 599 (2003)
- 146. H.Nagashima, Y.Kato, H.Yamaguchi, E.Kimura, T.Kawanishi, M.Kato, Y.Saito, M.Haga, K.Itoh. *Chem. Lett.*, 1207 (1994)
- 147. H.Nagashima, A.Nakaoka, Y.Saito, M.Kato, T.Kawanishi, K.Itoh. J. Chem. Soc., Chem. Commun., 377 (1992)
- 148. V.A.Chernov, V.N.Ivanova, A.N.Kozhevnikova, G.A.Mardezhova, S.G.Nikitenko, A.A.Nikiforov. Nucl. Instrum. Methods Phys. Res., Sect. A, 359, 250 (1995)
- 149. В.Н.Иванова. *Журн. структ. химии*, **41**, 164 (2000)
- 150. M.Knupfer, D.M.Poirier, J.H.Weaver. Phys. Rev., Sect. B, 49, 8464 (1994)
- M.S.Denning, I.D.Watts, S.M.Moussa, P.Durand, M.J.Rosseinsky, K.Tanigaki. J. Am. Chem. Soc., 124, 5570 (2002)
- 152. X.H.Chen, D.H.Chi, Z.Sun, T.Takenobu, Z.S.Liu, Y.Iwasa. J. Am. Chem. Soc., **122**, 5729 (2000)
- M.S.Denning, T.J.S.Dennis, M.J.Rosseinsky, H.Shinohara. Chem. Mater., 13, 4753 (2001)
- 154. G.-W.Wang, K.Komatsu, Y.Murata, M.Shiro. Nature (London), 387, 583 (1997)
- D.V.Konarev, S.S.Khasanov, I.I.Vorontsov, G.Saito, M.Y.Antipin, A.Otsuka, R.N.Lyubovskaya. J. Chem. Soc., Chem. Commun., 2548 (2002)
- 156. Y.Iwasa, K.Tanoue, T.Mitani, A.Izuoka, T.Sugawara, T.Yagi. J. Chem. Soc., Chem. Commun., 1411 (1998)
- 157. M.Kunitake, S.Uemura, O.Ito, K.Fujiwara, Y.Murata, K.Komatsu. Angew. Chem., Int. Ed., 41 (6), 969 (2002)
- 158. K.Komatsu, K.Fujiwara, Y.Murata. J. Chem. Soc., Chem. Commun., 1583 (2000)
- 159. A.V.Rakhmanina, V.Agafonov, H.Allouchi, R.Ceolin, A.V.Dzyabchenko, V.M.Senyavin, H.Szwarc, V.A.Davydov, L.S.Kashevarova. JETP Lett., 66, 120 (1997)
- 160. X.Chen, S.Yamanaka, K.Sako, Y.Inoue, M.Yasukawa. Chem. Phys. Lett., 356, 291 (2002)
- 161. V.A.Davydov, L.S.Kashevarova, A.V.Rakhmanina, V.Agafonov, H.Allouchi, R.Ceolin, A.V.Dzyabchenko, V.M.Senyavin, H.Szwarc. *Phys. Rev., Sect. B*, **58**, 14786 (1998)
- 162. X.A.Chen, S.Yamanaka. Chem. Phys. Lett., 360, 501 (2002)
- B.Narymbetov, V.Agafonov, V.A.Davydov, L.S.Kashevarova, A.V.Rakhmanina, A.V.Dzyabchenko, V.I.Kulakov, R.Ceolin. *Chem. Phys. Lett.*, 367, 157 (2003)
- 164. L.A.Chernozatonskii, N.R.Serebryanaya, B.N.Mavrin. Chem. Phys. Lett., 316, 199 (2000)
- L.Marques, J.L.Hodeau, M.Nunez-Regueiro, M.Perroux. *Phys. Rev, Sect. B*, 54, 12633 (1996)
- 166. S.Margadonna, C.M.Brown, A.Lappas, K.Prassides, K.Tanigaki, K.D.Knudsen, T.L.Bihan, M.Mezouar. J. Solid State Chem., 145, 471 (1999)
- 167. P.W.Stephens, G.Bortel, G.Faigel, M.Tegze, A.Janossy, S.Pekker, G.Oszlanyi, L.Forro. *Nature (London)*, 370, 636 (1994)
- 168. D.V.Konarev, S.S.Khasanov, A.Otsuka, G.Saito. J. Am. Chem. Soc., 124, 8520 (2002)
- 169. W.E.Broderick, K.W.Choi, W.C.Wan. Proc.-Electrochem. Soc., 97, 1102 (1997)
- 170. A.Honnerscheid, R.E.Dinnebier, M.Jansen. Acta Crystallogr., Sect. B, 58, 482 (2002)
- 171. A.V.Soldatov, G.Roth, A.Dzyabchenko, D.Johnels, S.Lebedkin, C.Meingast, B.Sundqvist, M.Haluska, H.Kuzmany. *Science*, 293, 680 (2001)
- 172. U.Wedig, H.Brumm, M.Jansen. Chem. Eur. J., 8 (12), 2769 (2002)
- 173. K.Balasubramanian. Chem. Phys. Lett., 182, 257 (1991)
- 174. G.B.M.Vaughan, P.A.Heiney, D.E.Cox, A.R.McGhie, D.R.Jones, R.M.Strongin, M.A.Cichy, A.B.Smith. *Chem. Phys.*, 168, 185 (1992)
- 175. W.Bensch, H.Werner, H.Bartl, R.Schlogl. J. Chem. Soc., Faraday Trans., 90, 2791 (1994)
- 176. A.L.Balch, D.A.Costa, J.W.Lee, B.C.Noll, M.M.Olmstead. *Inorg. Chem.*, **33**, 2071 (1994)

- 177. A.L.Balch, D.A.Costa, B.C.Noll, M.M.Olmstead. J. Am. Chem. Soc., 117, 8926 (1995)
- 178. A.L.Balch, D.A.Costa, M.M.Olmstead. J. Chem. Soc., Chem. Commun., 2449 (1996)
- 179. R.Bini, J.Ebenhoch, M.Fanti, P.W.Fowler, S.Leach, G.Orlandi, C.Ruchardt, J.P.B.Sandall, F.Zerbetto. *Chem. Phys.*, 232, 75 (1998)
- 180. J.Nossal, R.K.Saini, A.K.Sadana, H.F.Bettinger, L.B.Alemany, G.E.Scuseria, W.E.Billups, M.Saunders, A.Khong, R.Weisemann. J. Am. Chem. Soc., 123, 8482 (2002)
- 181. A.D.Darwish, A.G.Avent, R.Taylor, D.R.M.Walton. J. Chem. Soc., Perkin Trans. 2, 2051 (1996)
- O.V.Boltalina, M.Buhl, A.Khong, M.Saunders, J.M.Street, R.Taylor. J. Chem. Soc., Perkin Trans. 2, 1475 (1999)
- 183. L.E.Hall, D.R.McKenzie, M.I.Attalla, A.M.Vassallo, R.L.Davis, J.B.Dunlop, D.J.H.Cockayne. J. Phys. Chem. B, 97, 5741 (1993)
- 184. Q.Zhu, D.E.Cox, J.E.Fischer, K.Kniaz, A.R.McGhie, O.Zhou. Nature (London), 355, 712 (1992)
- 185. P.R.Birkett, C.Christides, P.B.Hitchcock, H.W.Kroto, K.Prassides, R.Taylor, D.R.M.Walton. J. Chem. Soc., Perkin Trans. 2, 1407 (1993)
- O.V.Boltalina, A.Y.Lukonin, J.M.Street, R.Taylor. J. Chem. Soc., Chem. Commun., 1601 (2000)
- 187. H.Selig, C.Lifshitz, T.Peres, J.E.Fischer, A.R.McGhie, W.J.Romanow, J.P.McCauley, A.B.Smith. J. Am. Chem. Soc., 113, 5475 (1991)
- 188. R.Taylor. J. Fluorine Chem., 125, 359 (2004)
- 189. I.S.Neretin, K.A.Lyssenko, M.Y.Antipin, Y.L.Slovokhotov, O.V.Boltalina, P.A.Troshin, A.Y.Lukonin, L.N.Sidorov, R.Taylor. *Angew. Chem., Int. Ed.*, **39**, 3273 (2000)
- I.V.Goldt, O.V.Boltalina, L.N.Sidorov, E.Kemnitz, S.I.Troyanov. Solid State Sci., 4, 1395 (2002)
- 191. O.V.Boltalina, B.de La Vaissiere, P.W.Fowler, P.B.Hitchcock, J.P.B.Sandall, P.A.Troshin, R.Taylor. J. Chem. Soc., Chem. Commun., 1325 (2000)
- 192. O.V.Boltalina, P.B.Hitchcock, P.A.Troshin, J.M.Street, R.Taylor. J. Chem. Soc., Perkin Trans. 2, 2410 (2000)
- 193. P.B.Hitchcock, R.Taylor. J. Chem. Soc., Chem. Commun., 2078 (2002)
- 194. A.G.Avent, B.W.Clare, P.B.Hitchcock, D.L.Kepert, R.Taylor. J. Chem. Soc., Chem. Commun., 2370 (2002)
- 195. S.I.Troyanov, P.A.Troshin, O.V.Boltalina, I.N.Ioffe, L.N.Sidorov, E.Kemnitz. Angew. Chem., Int. Ed., 40, 2285 (2001)
- 196. И.С.Неретин, К.А.Лысенко, М.Ю.Антипин, Ю.Л.Словохотов. Изв. АН. Сер. хим., 695 (2002)
- 197. O.V.Boltalina, J.M.Street, R.Taylor. J. Chem. Soc., Chem. Commun., 1827 (1998)
- 198. X.W.Wei, A.D.Darwish, O.V.Boltalina, P.B.Hitchcock, J.M.Street, R.Taylor. Angew. Chem., Int. Ed., 40, 2989 (2001)
- O.V.Boltalina, V.Y.Markov, P.A.Troshin, A.D.Darwish, J.M.Street, R.Taylor. Angew. Chem., Int. Ed., 40, 787 (2001)
- 200. A.A.Tuinman, A.A.Gakh, J.L.Adcock, R.N.Compton. J. Am. Chem. Soc., 115, 5885 (1993)
- 201. G.Olah, I.Bucsi, C.Lambert, R.Aniszfield, N.J.Trivedi, D.K.Sensharma, G.K.S.Prakash. J. Am. Chem. Soc., 113, 9385 (1991)
- 202. P.R.Birkett, A.G.Avent, A.D.Darwish, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Chem. Commun., 1230 (1993)
- 203. H.Al-Matar, A.K.Abdul-Sada, A.G.Avent, P.W.Fowler, P.B.Hitchcock, K.M.Rogers, R.Taylor. J. Chem. Soc., Perkin Trans. 2, 53 (2002)
- 204. H.Al-Matar, P.B.Hitchcock, A.G.Avent, R.Taylor. J. Chem. Soc., Chem. Commun., 1071 (2000)
- 205. P.R.Birkett, A.G.Avent, A.D.Darwish, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Perkin Trans. 2, 3, 457 (1997)
- P.R.Birkett, R.Taylor, N.K.Wachter, M.Carano, F.Paolucci, S.Roffia, F.Zerbetto. J. Am. Chem. Soc., 122, 4209 (2000)
- 207. A.D.Darwish, A.G.Avent, A.K.Abdul-Sada, R.Taylor. J. Chem. Soc., Chem. Commun., 1374 (2003)
- A.A.Tuinman, P.Mukherjee, J.L.Adcock, R.L.Hettich, R.N.Compton. J. Phys. Chem. B, 96, 7584 (1992)

- 209. P.R.Birkett, A.G.Avent, A.D.Darwish, H.W.Kroto, R.Taylor, D.R.M.Walton. J. Chem. Soc., Chem. Commun., 683 (1995)
- A.D.Darwish, P.de Guio, R.Taylor. Fullerenes, Nanotubes, Carbon Nanostruct., 10, 261 (2002)
- 211. G.Waidmann, M.Jansen. Z. Anorg. Allg. Chem., 623, 623 (1997)
- 212. S.I.Troyanov, E.Kemnitz. Eur. J. Org. Chem., 3916 (2003)
- 213. I.Lamparth, C.Maichle-Mossmer, A.Hirsch. Angew. Chem., Int. Ed. Engl., 34, 1607 (1995)
- 214. G.Schick, M.Levitus, L.Kvetko, B.A.Johnson, I.Lamparth, R.Lunkwitz, B.Ma, S.I.Khan, M.A.Garcia-Garibay, Y.Rubin. J. Am. Chem. Soc., 121, 3246 (1999)
- 215. A.F.Kiely, R.C.Haddon, M.S.Meier, J.P.Selegue, C.P.Brock, B.O.Patrick, G.-W.Wang, Y.Chen. J. Am. Chem. Soc., 121, 7971 (1999)
- 216. P.Seiler, A.Herrmann, F.Diederich. *Helv. Chim. Acta*, **78**, 344 (1995)
- 217. J.M.Hawkins, A.Meyer, T.A.Lewis, S.Loren, F.J.Hollander. Science, 252, 312 (1991)
- M.D.Westmeyer, T.B.Rauchfuss, A.K.Verma. *Inorg. Chem.*, 35, 7140 (1996)
- P.Timmerman, H.L.Anderson, R.Faust, J.F.Nierengarten, T.Habicher, P.Seiler, F.Diederich. *Tetrahedron*, 52, 4925 (1996)
- 220. K.Fujiwara, K.Komatsu. J. Chem. Soc., Chem. Commun., 1986 (2001)
- 221. T.Habicher, J.F.Nierengarten, V.Gramlich, F.Diederich. Angew. Chem., Int. Ed., 37, 1916 (1998)
- 222. H.Isobe, A.Ohbayashi, M.Sawamura, E.Nakamura. J. Am. Chem. Soc., **122**, 2669 (2000)
- 223. Y.Rubin, T.Jarrosson, G.W.Wang, M.D.Bartberger, K.N.Houk, G.Schick, M.Saunders, R.J.Cross. Angew. Chem., Int. Ed., 40, 1543 (2001)
- 224. M.J.Arce, A.L.Viado, Y.-Z.An, S.I.Khan, Y.Rubin. J. Am. Chem. Soc., 118, 3775 (1996)
- 225. E.F.Paulus, C.Bingel. Acta Crystallogr., Sect. C, 51, 143 (1995)
- 226. H.Irngartinger, A.Weber, T.Escher. *Liebigs Ann. Chem.*, 1845 (1996)
- 227. P.J.Fagan, J.C.Calabrese, B.Malone. J. Am. Chem. Soc., **113**, 9408 (1991)
- 228. M.P.Gomez-Sal, B.F.G.Johnson, J.Lewis, P.R.Raithby, A.H.Wright. J. Chem. Soc., Chem. Commun., 1682 (1985)
- 229. H.Song, K.Lee, J.T.Park, M.-G.Choi. *Organometallics*, **17**, 4477 (1998)
- J.T.Park, H.Song, J.-J.Cho, M.-K.Chung, J.-H.Lee, I.-H.Suh. Organometallics, 17, 227 (1998)
- 231. H.Song, K.Lee, M.-G.Choi, J.T.Park. Organometallics, 21, 1756 (2002)
- 232. K.Lee, H.Song, B.Kim, J.T.Park, S.Park, M.-G.Choi. J. Am. Chem. Soc., 124, 2872 (2002)
- 233. X.Jin, X.Xie, K.Tang. J. Chem. Soc., Chem. Commun., 750 (2002)
- 234. A.L.Balch, V.J.Catalano, J.W.Lee. Inorg. Chem., 30, 3980 (1991)
- 235. A.L.Balch, J.W.Lee, B.C.Noll, M.M.Olmstead. J. Am. Chem. Soc., 114, 10984 (1992)
- 236. A.L.Balch, V.J.Catalano, J.W.Lee, M.M.Olmstead, S.R.Parkin. J. Am. Chem. Soc., 113, 8953 (1991)
- 237. A.L.Balch, J.W.Lee, M.M.Olmstead. Angew. Chem., Int. Ed. Engl., 31, 1356 (1992)
- 238. M.Sawamura, H.Iikura, E.Nakamura. J. Am. Chem. Soc., 118, 12850 (1996)
- 239. M.Sawamura, Y.Kuninobu, E.Nakamura. J. Am. Chem. Soc., **122**, 12407 (2000)
- 240. M.Sawamura, H.Iikura, A.Hirai, E.Nakamura. J. Am. Chem. Soc., 120, 8285 (1998)
- 241. H.Shinohara. Rep. Prog. Phys., 63, 843 (2000)
- 242. J.Heath, S.C.O'Brien, Q.Zhang, Y.Liu, R.F.Curl, H.W.Kroto, F.K.Tittel, R.E.Smalley. J. Am. Chem. Soc., 107, 7779 (1985)
- 243. Y.Chai, T.Guo, C.Jin, R.E.Haufler, L.P.F.Chibante, J.Fure, L.Wang, J.M.Alford, R.E.Smalley. J. Phys. Chem. B, 95, 7564 (1991)
- M.Saunders, R.J.Cross, H.A.Jimenez-Vazquez, R.Shimshi, A.Khong. Science, 271, 1693 (1996)

- 245. E.Shabtai, A.Weitz, R.C.Haddon, R.E.Hoffman, M.Rabinovitz, A.Khong, R.J.Cross, M.Saunders, P.C.Cheng, L.T.Scott. J. Am. Chem. Soc., 120, 6389 (1998)
- 246. M.S.Syamala, R.J.Cross, M.Saunders. J. Am. Chem. Soc., **124**, 6216 (2002)
- 247. A.Khong, H.A.Jimenez-Vazquez, M.Saunders, R.J.Cross, J.Laskin, T.Peres, C.Lifshitz, R.Strongin, A.B.Smith. J. Am. Chem. Soc., 120, 6380 (1998)
- J.Laskin, T.Peres, C.Lifshitz, M.Saunders, R.J.Cross, A.Khong. Chem. Phys. Lett., 285, 7 (1998)
- H.M.Lee, M.M.Olmstead, T.Suetsuna, H.Shimotani, N.Dragoe, R.J.Cross, K.Kitazawa, A.L.Balch. J. Chem. Soc., Chem. Commun., 1352 (2002)
- E.E.B.Campbell, R.Tellgmann, N.Krawez, I.V.Hertel. J. Phys. Chem. Solids, 58, 1763 (1997)
- 251. A.Weidinger, M.Waiblinger, B.Pietzak, T.A.Murphy. *Appl. Phys. A*, **66**, 287 (1998)
- C.Knapp, N.Weiden, K.Kass, K.P.Dinse, B.Pietzak, M.Waiblinger, A.Weidinger. *Mol. Phys.*, 95, 999 (1998)
- 253. H.Shinohara. In Fullerenes: Chemistry, Physics and Technology. (Eds K.M.Kadish, R.S.Ruoff). Wiley, New York, 2000. P. 357
- 254. K.Yamamoto, H.Funasaka, T.Takahashi, T.Akasaka, T.Suzuki, Y.Maruyama. J. Phys. Chem. B, **98**, 12831 (1994)
- 255. T.Akasaka, S.Okubo, M.Kondo, Y.Maeda, T.Wakahara, T.Kato, T.Suzuki, K.Yamamoto, K.Kobayashi, S.Nagase. *Chem. Phys. Lett.*, 319, 153 (2000)
- 256. K.Kikuchi, K.Akiyama, K.Sakaguchi, T.Kodama, H.Nishikawa, I.Ikemoto, T.Ishigaki, Y.Achiba, K.Sueki, H.Nakahara. *Chem. Phys. Lett.*, **319**, 472 (2000)
- 257. K.Kobayashi, S.Nagase. Chem. Phys. Lett., 313, 45 (1999)
- 258. K.Kobayashi, S.Nagase. Chem. Phys. Lett., 282, 325 (1998)
- 259. T.J.S.Dennis, H.Shinohara. Appl. Phys. A, 66, 243 (1998)
- 260. S.Iida, Y.Kubozono, Y.Slovokhotov, Y.Takabayashi, T.Kanbara, T.Fukunaga, S.Fujiki, S.Emura, S.Kashino. *Chem. Phys. Lett.*, 338, 21 (2001)
- 261. C.H.Park, B.O.Wells, J.DiCarlo, Z.X.Shen, J.R.Salem, D.S.Bethune, C.S.Yannoni, R.D.Johnson, M.S.de Vries, C.Booth, F.Bridges, P.Pianetta. *Chem. Phys. Lett.*, **213**, 196 (1993)
- 262. M.Nomura, Y.Nakao, K.Kikuchi, Y.Achiba. *Physica B*, **208**/**209**, 539 (1995)
- 263. H.Giefers, F.Nessel, S.I.Gyory, M.Stecker, G.Wortmann, Y.S.Grushko, E.G.Alekseev, V.S.Kozlov. *Carbon*, **37**, 721 (1999)
- 264. Y.Kubozono, T.Inoue, Y.Takabayashi, S.Fujiki, S.Kashino, T.Akasaka, T.Wakahara, M.Inakuma, H.Kato, T.Sigai, H.Shinohara, S.Emura. J. Synchrotron Radiat., 8, 551 (2001)
- 265. K.Akiyama, K.Sueki, H.Haba, K.Tsukada, M.Asai, T.Yaita, Y.Nagame, K.Kikuchi, M.Katada, H.Nakahara. J. Radioanal. Nucl. Chem., 255, 155 (2003)
- 266. E.Nishibori, M.Takata, M.Sakata, H.Tanaka, M.Hasegawa, H.Shinohara. Chem. Phys. Lett., 330, 497 (2000)
- 267. M.Takata, B.Umeda, E.Nishibori, M.Sakata, Y.Saito, M.Ohno, H.Shinohara. *Nature (London)*, **377**, 46 (1995)
- M.Takata, E.Nishibori, B.Umeda, M.Sakata, E.Yamamoto, H.Shinohara. *Phys. Rev. Lett.*, **78**, 3330 (1997)
- 269. E.Nishibori, M.Takata, M.Sakata, A.Taninaka, H.Shinohara. Angew. Chem., Int. Ed., 40, 2998 (2001)
- M.Takata, E.Nishibori, M.Sakata, M.Inakuma, E.Yamamoto, H.Shinohara. *Phys. Rev. Lett.*, 83, 2214 (1999)
- 271. C.R.Wang, T.Kai, T.Tomiyama, T.Yoshida, Y.Kobayashi, E.Nishibori, M.Takata, M.Sakata, H.Shinohara. Angew. Chem., Int. Ed., 40, 397 (2001)
- 272. Б.Ф.Ормонт. В кн. *Структуры неорганических веществ.* ГИТТЛ, Москва; Ленинград, 1950. С. 278
- 273. S.Stevenson, G.Rice, T.Glass, K.Harich, F.Cromer, M.R.Jordan, J.Craft, E.Hadju, R.Bible, M.M.Olmstead, K.Maitra, A.J.Fisher, A.L.Balch, H.C.Dorn. *Nature (London)*, **401**, 55 (1999)
- 274. M.M.Olmstead, A.de Bettencourt-Dias, J.C.Duchamp, S.Stevenson, H.C.Dorn, A.L.Balch. J. Am. Chem. Soc., 122, 12220 (2000)

- M.M.Olmstead, A.de Bettencourt-Dias, J.C.Duchamp, S.Stevenson, D.Marciu, H.C.Dorn, A.L.Balch. Angew. Chem., Int. Ed., 40, 1223 (2001)
- 276. H.M.Lee, M.M.Olmstead, E.Iezzi, J.C.Duchamp, H.C.Dorn, A.L.Balch. J. Am. Chem. Soc., 124, 3494 (2002)
- 277. J.M.Campanera, C.Bo, M.M.Olmstead, A.L.Balch, J.M.Poblet. *J. Phys. Chem. A*, **106**, 12356 (2002)
- M.M.Olmstead, A.de Bettencourt-Dias, S.Stevenson, H.C.Dorn, A.L.Balch. J. Am. Chem. Soc., 124, 4172 (2002)
- 279. M.M.Olmstead, H.M.Lee, S.Stevenson, H.C.Dorn, A.L.Balch. J. Chem. Soc., Chem. Commun., 2688 (2002)
- T.Watanuki, A.Fujuwara, I.Ishii, Y.Mashuoka, H.Suematsu, K.Ohwada, H.Nakao, Y.Fujii, T.Kodama, K.Kikuchi, Y.Achiba. In *Electronic Properties of Novel Materials — Science and Technology of Molecular Nanostructures. (Proceedings of Conference).* (Eds H.Kuzmany, J.Fink, M.Mehring, S.Roth). American Institute of Physics, Melville, NY, 1999. P. 124
- 281. C.J.Nuttall, Y.Inada, K.Nagai, Y.Iwasa. Phys. Rev., Sect. B, 62, 8592 (2000)

CRYSTAL CHEMISTRY OF FULLERENES

I.S.Neretin, Yu.L.Slovokhotov

A.N.Nesmeyanov Institute of Organoelement Compounds, Russian Academy of Sciences 28, Ul. Vavilova, 119991 Moscow, Russian Federation, Fax (095)135–5085

The current state of the diffraction studies of fullerene derivatives is considered. The crystal structures of individual fullerenes and their derivatives determined experimentally by single crystal X-ray diffraction are surveyed. Data of powder X-ray diffraction and EXAFS are presented for the classes of compounds poorly characterised by single crystal diffraction. The encountered patterns of laying of the fullerene spheres are described. The most typical structural patterns are shown. Possible reasons for the rotational disorder wich hampers structural studies of fullerenes are discussed. The model of «gum cavity», which allows one to predict qualitatively the mutual arrangement of different orientations of the disordered molecule, is formulated. Bond length redistribution on σ and π -derivatisation of the carbon cage is analysed using data from the Cambridge Structural Database. The factors influencing the packing of molecules in the crystal and the quality of diffraction patterns obtained are discussed. Bibliography — 282 references.

Received 15th December 2003