
1	2	3	4	5	Сумма

Лекционная контрольная № 2. Химическая термодинамика

Задача 1. Азот образует с водородом несколько соединений:

По одной из приведенных ниже схем (выбор преподавателя) составьте уравнение реакции и рассчитайте ее энтальпию, используя данные таблицы.

- 1) $N_{2(\Gamma)} + H_{2(\Gamma)} \rightarrow NH_{3(\Gamma)}$
- 2) $N_2H_{4(\Gamma)} \rightarrow N_{2(\Gamma)} + H_{2(\Gamma)}$
- 3) $N_2H_{4(\Gamma)} \rightarrow N_{2(\Gamma)} + NH_{3(\Gamma)}$
- 4) $N_2H_{4(\Gamma)} + H_{2(\Gamma)} \rightarrow NH_{3(\Gamma)}$
- 5) $N_{2(\Gamma)} + H_{2(\Gamma)} \rightarrow HN_{3(\Gamma)}$
- 6) $HN_{3(\Gamma)} \rightarrow NH_{(\Gamma)} + N_{2(\Gamma)}$

Задача 2. Используя данные таблицы, рассчитайте стандартную энтропию вещества при заданной температуре. Вещество и температуру выбирает преподаватель (температура может быть как больше, так и меньше 298 К, как с учетом фазового перехода, так и без него). Теплоемкости считайте не зависящими от температуры.


Вещество	$S_{298}^{\circ},$ Дж/(моль \cdot К)	$C_p(\mathbf{ж}),$ Дж/(моль·К)	$C_p(\Gamma),$ Дж/(моль·К)	<i>Т</i> _{кип} , К	Δ _{исп} <i>H</i> °, кДж/моль
H ₂ O	69.9	75.3	33.6	373.15	40.6
C ₂ H ₅ OH	159.9	112.4	78.3	351.5	38.6
C_6H_6	173.3	134.8	82.4	353.2	30.8
NH ₃	192.8	80.8	35.1	195.4	23.35
Вещество	$S_{298}^{\circ},$ Дж/(моль \cdot К)	$C_p({ m TB}),$ Дж/(моль·К)	$C_p(\mathbf{ж}),$ Дж/(моль·К)	$T_{ m пл}, \ m K$	$\Delta_{\Pi extsf{ iny }} H^\circ,$ к $oxdsymbol{arPi}$ ж/моль
H ₂ O	69.9	37.8	75.3	273.15	6.01
Na	51.2	28.2	31.8	370.9	2.64
Pb	64.8	26.7	30.6	600.6	4.77
Hg	75.9	28.2	28.0	234.3	2.29

Задача 3. Вариант 1. (Вещества и концентрации можно варьировать).

Парциальные мольные объемы воды и метанола в растворе с мольной долей метанола 0.4 равны 17.35 и 39.01 см³/моль, соответственно. Сколько миллилитров чистых воды и метанола надо взять, чтобы получить литр раствора? Чему равна массовая доля метанола в растворе? Плотности воды и метанола равны 0.998 и 0.791 г/мл, соответственно.

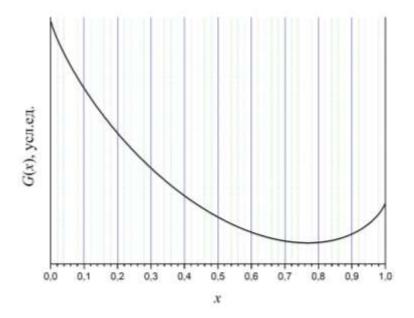
Вариант 2. (Соль, растворитель и температуры можно варьировать).

Криоскопическая константа жидкого аммиака равна $0.91~\rm K\cdot kr/моль$, температура плавления $-77.7~\rm ^{o}C$. Сколько граммов NH_4NO_3 (сильный электролит) нужно растворить в $200~\rm r$ аммиака, чтобы полученный раствор замерзал при $-80~\rm ^{o}C$?

Задача 4. На рисунке изображена фазовая диаграмма индивидуального вещества.

Варианты вопросов (в задаче надо дать не менее двух: один качественный и один расчетный, цифры в расчетных вопросах можно варьировать):

25 °C


132.4 °C

- 1) Какое это вещество? Выберите из списка: H₂, N₂, H₂O, CO₂, NH₃, бензол, этанол, фосфор.
- 2) Каким состояниям соответствуют области І, ІІ, ІІІ?

-77.75 °C

- 3) Каким процессам соответствуют три линии на фазовой диаграмме?
- 4) Что означают точки с координатами (0.060 атм, -77.75 °C), (111.3 атм, 132.4 °C)?
- 5) Что будет происходить при нагревании вещества от -100 °C до 150 °C при давлении 5 атм?
- 6) Что будет происходить при нагревании вещества от -100 °C до 150 °C при давлении 0.01 атм?
- 7) Укажите температуру, при которой сжатие вещества от 0.01 атм до 150 атм вызовет два фазовых перехода. Объясните, какие переходы будут происходить.
- 8) Укажите температуру, при которой сжатие вещества от 0.01 атм до 150 атм вызовет один фазовый переход. Объясните, какие переходы будут происходить.
- 9) Укажите температуру, при которой сжатие вещества от 0.01 атм до 150 атм будет происходить без фазовых переходов. Объясните, почему не будет фазовых переходов.
- 10) Используя данные диаграммы, рассчитайте энтальпию испарения. Объясните, какие приближения вы использовали при расчете.
- 11) Используя данные диаграммы, рассчитайте нормальную точку кипения вещества (при давлении 1 атм). Найдите энтропию испарения при этой температуре.
- 12) Рассчитайте, до какого давления надо сжать вещество, чтобы оно стало жидким при комнатной температуре.
- 13) Плотность вещества в жидком и в твердом состоянии равна 0.79 и 0.83 г/см³, соответственно; энтальпия плавления 5.65 кДж/моль. На сколько градусов изменится температура плавления при повышении давления от тройной точки до 100 атм?

Задача 5. 1 моль вещества при 200 °C вступает в реакцию изомеризации $A \rightleftharpoons P$. Зависимость полной энергии Гиббса системы от химической переменной (количества прореагировавшего A), G(x) приведена на графике.

- 1) Рассчитайте константу равновесия и стандартную энергию Гиббса реакции.
- 2) В какую сторону пойдет реакция, если смешать a моль A и p моль P (значения a и p задает преподаватель)?
- 3) Сколько молей A образуется при нагревании x молей P (значение x задает преподаватель) до температуры 200 °C и достижении равновесия?