ChemNet
 
Химический факультет МГУ
Предыдущий раздел Содержание Следующий раздел Критерии термодинамического совершенства технологических систем

2.2.3. Газофазная химическая реакция

Пусть газофазная реакция протекает   (возможно, с участием катализатора) по схеме

.

В соответствии с принятым стандартом стехиометрические коэффициенты и исходных веществ считаем отрицательными, коэффициенты и продуктов реакции – положительными, причем .Будем предполагать, что компоненты реакционной смеси проявляют свойства идеальных газов и, в частности, энтальпия их смешения равна нулю.

Рис.2.5. Схема неравновесного изобарно-изотермического химического превращения смеси веществ.

Простейшая схема самопроизвольного химического превращения веществ изображена на рис. 2.5. В термостатированный реакционный сосуд, в котором поддерживается с помощью поршня постоянное давление p, вводится смесь, состоящая из , , и молей компонентов A, B, C и D. Парциальные давления компонентов равны , где i = A, B,C и D .
Смесь занимает объем . Первоначальный состав смеси не соответствует химическому равновесию в системе. После инициирования химической реакции (например, внесением катализатора) происходит самопроизвольное изменение состава смеси вплоть до достижения химического равновесия, соответствующего заданным p и T. Обозначим равновесные давления компонентов через , , и (их соотношение определяется константой равновесия реакции) и соответствующие значения чисел молей компонентов через , , и . Произошедшие изменения чисел молей в системе удовлетворяют стехиометрии реакции:

, (2.14)

где . Суммарное изменение числа молей в системе составит

, (2.15)

а изменение объема равно

. (2.16)

В смеси реагентов – идеальных газов молярная энтальпия реакции , т.е. изменение энтальпии в расчете на каждый моль образовавшихся продуктов, или, в нашем примере, на молей продукта D, не зависит от текущего состава реакционной смеси (что связано с нулевой энтальпией смешения компонентов). Поэтому можно записать

, (2.17)

где H1 и H2 – энтальпии конечного и начального состояния системы.

Изменение энтальпии при p = const равно количеству теплоты, подведенному к системе. Теплообмен между реакционной смесью и термостатом будем считать квазиравновесным процессом, предполагая, что скорость реакции мала по сравнению со скоростью установления термического равновесия между реактором и термостатом (что регулируется, например, количеством внесенного катализатора или перемешиванием смеси). Тогда обратимая часть изменения энтропии реакционной смеси составит

. (2.18)

Для дальнейшего удобно изменение энтальпии представить в виде суммы , где – изменение внутренней энергии системы. С учетом (2.16)

. (2.19)

Каково производство энтропии внутри системы из-за необратимого характера самого химического превращения? Ответ на этот вопрос получим, произведя такое же изменение состояния системы по равновесной траектории с помощью гипотетического устройства, называемого ящиком Вант-Гоффа.

Это устройство включает в себя (рис.2.6) термостатируемый реакционный объем, снабженный подвижным поршнем для поддержания постоянного давления и вентилями для напуска и ввода газовых смесей, и четыре хемостата индивидуальных компонентов смеси. Перенос веществ между хемостатами и реакционным объемом осуществляется через селективно проницаемые мембраны, снабженные задвижками. В двух вспомогательных резервуарах находятся газовые смеси исходного и конечного (равновесного) составов.

После заполнения реакционного сосуда исходной смесью требуемое превращение осуществляется в четыре стадии. Первая стадия – равновесное разделение смеси на индивидуальные компоненты. Этот процесс проводится путем синхронного перемещения пяти поршней, так что в реакционном сосуде непрерывно поддерживается давление p, а в каждом отдельном хемостате – давление, равное парциальному давлению индивидуального газа в исходной смеси, т.е. pi.

Вторая стадия – изотермическое расширение индивидуальных газов в хемостатах от давлений pi. до равновесных давлений .

Рис.2.6. Гипотетическое устройство для осуществления равновесного процесса химического превращения смеси веществ (ящик Вант-Гоффа): 1 реакционный сосуд: 2 хемостаты индивидуальных компонентов; 3 резервуар исходной смеси; 4 вспомогательный резервуар реакционной смеси равновесного состава. Положение поршней на схеме соответствует исходному состоянию системы после напуска смеси в реакционный сосуд.

Третья стадия – собственно химическое превращение в квазиравновесном режиме. Сначала реакционный сосуд заполняется некоторым количеством равновесной газовой смеси из вспомогательного резервуара под давлением p и вносится катализатор. Затем при сохранении неподвижным поршня в реакционном сосуде, путем синхронного перемещения четырех поршней в хемостатах в реакционный объем постепенно вводятся количества исходных компонентов и , и соответственно отводятся образующиеся из них количества продуктов реакции и . При этом в хемостатах постоянно поддерживаются равновесные давления индивидуальных компонентов . Необходимо подчеркнуть, что реакция протекает квазиравновесно, т.к. легко может быть осуществлена и в противоположном направлении, путем смены направлений движения всех поршней. После завершения химического превращения в реакционном сосуде остается в том же количестве и составе газовая смесь, загруженная в него в начале стадии; эта смесь возвращается во вспомогательный резервуар. Заметим, что использование буферной газовой смеси равновесного состава предусматривается с той целью, чтобы контрольное химическое превращение протекало в ненулевом реакционном объеме.

Последняя стадия – равновесное смешение индивидуальных газов, находящихся в хемостатах, с итоговым получением в реакционном объеме газовой смеси заданного состава.

Рассмотрим термодинамические эффекты каждой стадии. На первой и четвертой стадиях разделения и смешения компонентов через мембраны изменение энтропии системы не происходит, что обусловлено отсутствием тепловых эффектов этих процессов (см. предыдущий раздел).

Изменение энтропии при изотермическом расширении (сжатии) индивидуальных газов на второй стадии в сумме составит (также см. предыдущий раздел)

. (2.20)

На этой стадии системой будет произведена работа

. (2.21)

Более детально остановимся на третьей стадии процесса. Поскольку внутренняя энергия системы при мембранном (равновесном) разделении и смешении идеальных газов, а также при их изотермическом расширении или сжатии, остается постоянной, изменение внутренней энергии на третьей стадии соответствует полному изменению внутренней энергии системы при переходе ее из начального в конечное состояние, . С другой стороны, работа по перемещению поршней в хемостатах при постоянном давлении на поршень, равном , в сумме составит

,

где – изменение объема i-го компонента в хемостате. Таким образом, с учетом (2.15)

.

По закону сохранения энергии к системе должно быть подведено от термостата количество теплоты, равное

,

что в точности соответствует изменению энтальпии при неравновесном осуществлении химического превращения (2. 19). Отсюда ясно, что изменение энтропии на третьей стадии равновесного процесса точно равно обратимой составляющей изменения энтропии в неравновесном процессе.

Складывая (2.18) и (2. 20), получим суммарное изменение энтропии в равновесном процессе

. (2.22)

Второе слагаемое (2.22) определяет искомую величину производства энтропии при самопроизвольном протекании химического превращения

. (2.23)

Примечательно, что структура (2. 23) аналогична структуре выражения для производства энтропии при смешении газов (2.9).

Отметим, что равновесный переход системы из начального в конечное состояние сопровождается получением дополнительной работы, равной . Эта работа положительна в силу положительности .

Дифференциальное приращение энтропии при самопроизвольном течении реакции найдем путем прямого расчета дифференциального изменения функции Гиббса. Так как , то

, (2.24)

где – химическое сродство реагирующих веществ (менее архаичным и более точным эквивалентом английскому affinity был бы термин "химическое притяжение"). Так же, как и формула (2.13) для самопроизвольного смешения веществ, дифференциальное выражение (2.24) справедливо для изобарно-изотермического превращения любых смесей (не только идеальных газов).


Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору