Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

Декан химического факультета, Акад. РАН, профессор

/В.В. Лунин/

Blue

«27» февраля 2017 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Структура белка

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Биоорганическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №1 от 27.01.2017) Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 22 июля 2011 года № 729 (в редакции приказов МГУ от 22 ноября 2011 года № 1066, от 21 декабря 2011 года № 1228, от 30 декабря 2011 года № 1289, от 27 апреля 2012 года № 303, от 30 декабря 2016 года № 1671).

Год (годы) приема на обучение 2014/2015, 2015/2016, 2016/2017, 2017/2018, 2018/2019

- 1. Наименование дисциплины (модуля) Структура белка
- 2. Уровень высшего образования специалитет.
- 3. Направление подготовки: 04.05.01 Фундаментальная и прикладная химия.
- 4. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.

5. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников)

Компетенция	Планируемые результаты обучения по дисциплине (модулю)				
СПК-1.С. Способность использовать	Знать: актуальные направления химии живых систем, основные				
представления об актуальных направлениях	направления применения биополимеров и их компонентов в биологии и				
химии живых систем, о месте биоорганической	медицине				
химии в современной науке, об основных	Уметь : выбирать направление экспериментального исследования,				
направлениях применения биополимеров и их					
компонентов в биологии и медицине при					
решении задач профессиональной деятельности					
СПК-2.С. Способность применять знания					
структуры, реакционной способности и					
биологических функций биополимеров, базовые					
понятия молекулярной и клеточной биологии при	биополимеров и их биологическими функциями				
решении актуальных задач биохимии					
СПК-4.С. Способность пользоваться	1 11 3 7				
современными интернет-ресурсами для поиска					
научной информации по строению и свойствам					
биополимеров, для анализа и моделирования их					
структуры	Уметь : проводить поиск научной информации по строению и свойствам биополимеров, использовать для этой цели современные интернет-ресурсы,				
	включая базы данных, специализированные компьютерные программы,				
	ресурсы удаленных биоинформатических серверов				
	Владеть: базовым арсеналом компьютерных программ для визуализации и				
	анализа структур биополимеров				

6. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 2 зачетных единицы, всего 72 часа, из которых 58 часа составляет контактная работа студента с преподавателем (18 часов занятия лекционного типа, 36 часов – занятия семинарского типа, 4 часа – текущий и промежуточный контроль успеваемости), 14 часов составляет самостоятельная работа учащегося.

7. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен:

знать: основы физической химии, основы биохимии, строение и свойства аминокислот и белков, базовые принципы молекулярной биологии;

уметь: применять знания и концепции, полученные в различных разделах химии, для понимания закономерностей строения и взаимодействия биополимеров;

владеть: основными химическими теориями, концепциями, законами, описывающими строение и свойства биополимеров; базовыми навыками работы на персональном компьютере.

8. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое	Всего	В том числе								
содержание разделов и тем дисциплины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы						Самостоятельная работа обучающегося,		
форма промежуточной		из них часы								
аттестации по дисциплине									из них	
(модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленны е на проведение текущего контроля успеваемост и, промежуточ ной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератовит.п	Bcero

Раздел I.		2	8							
Раздел II.		4	8							
Раздел III.		4	6							
Раздел IV.		4	8							
Раздел V.		4	6							
Промежуточная аттестация зачет	18					4				14
Итого	72	18	36	0	0	4	58	12	0	14

9. Образовательные технологии:

- -применение компьютерных симуляторов, использование компьютерных программ для анализа, редактирования и визуализации пространственных структур;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

10. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Презентации лекций, конспекты лекций, основная и дополнительная учебная литература

11. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. Конспекты и презентации лекций.
- 2. Периодическая литература, рекомендованная лектором.

Дополнительная литература:

- 1. Финкельштейн А.В., Птицын О.Б. Физика белка. Университет, 2002.
- 2. D. Whitford. Proteins: Structure and Function. Wiley, 2005.
- 3. D. Chasman. Protein Structure: Determination, Analysis, and Applications for Drug Discovery. CRC Press, 2003.
- 4. J. Drenth. Principles of Protein X-Ray Crystallography. 3rd Ed. Springer Advanced Texts in Chemistry, 2007.

Интернет-ресурсы:

UCSF Chimera домашняя страница http://www.cgl.ucsf.edu/chimera/ Pymol домашняя страница: http://pymolwiki.org

- Материально-техническое обеспечение: занятия проводятся в компьютерном классе корпуса Б на 50 компьютеров с установленным специальным программным обеспечением (минимум: программы UCSF Chimera, SpdbViewer, WinCoot, пакет программ ССР4) и выходом в Интернет. Класс оснащен мультимедийным проектором и экраном для проведения лекционных занятий.
- 12. Язык преподавания русский
- 13. Преподаватели:
 - 1. Родина Елена Валерьевна, к.х.н., доц., кафедра химии природных соединений. Тел. 8(495)9395541, E-mail: rodina@belozersky.msu.ru

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.5.

Примеры практических заданий для текущего контроля:

- 1. Проанализировать содержимое pdb-файла произвольного белка. Выполнить ознакомительный рисунок структуры.
- 2. Найти в базе данных структуру белка с заданной пост-трансляционной модификацией. Выполнить рисунок с иллюстрацией данной модификации.
- 3. В структуре произвольного комплекса белка с лигандом (варианты: ATP, NADH, синтетический ингибитор, пептид) определить аминокислотные остатки, участвующие в координации лиганда. Выполнить рисунок; взаимодействующие атомы белка и лиганда выписать в таблицу, указав длины связей.

- 4. Найти в базе данных две структуры комплексов различных белков с ATP. Выполнить наложение структур по атомам ATP. Проанализировать координацию атомов ATP белковыми остатками. Выполнить рисунок, иллюстрирующий сходство и различие.
- 5. Провести выравнивание последовательностей для заданной группы белков. Рассчитать консервативность аминокислотных остатков с помощью предложенного биоинформатического сервера. Картировать консервативность в структуру референсного белка. Выполнить рисунок.
- 6. В заданном белке найти остатки, участвующие в межсубъединичных контактах: (1) внутри олигомера, (2) в кристаллических контактах. Выполнить рисунок области контактов; выписать в таблицу все найденные взаимодействия между соответствующими атомами, указав отдельно водородные связи, ионные контакты (с длинами связей) и гидрофобные взаимодействия.
- 7. Написать скрипт для выполнения рисунка из занятия 3.
- 8. Написать скрипт для выполнения рисунка из занятия 1, дополнить вращением молекулы белка и записать анимацию.
- 9. Выполнить морф двух или более структур произвольного белка. Варианты: (а) структур апоформы белка и комплекса с лигандом, (б) семейства структур, определяемых методом ЯМР.

Вопросы для зачета:

Раздел I.

- 1. Возможности и ограничения основных методов определения пространственной структуры белка.
- 2. База данных пространственных структур белков.
- 3. Биоинформатические подходы к анализу аминокислотных последовательностей.
- 4. Основные компьютерные программы для визуализации и анализа белковых структур.

Раздел II.

- 5. Вторичная структура белков.
- 6. Структурные мотивы в белках.
- 7. Укладка полипептидной цепи. Домены. Методы исследования фолдинга белков.

Раздел III.

- 8. Связывание низкомолекулярных лигандов в белках. Базовые сведения о молекулярном докинге.
- 9. Архитектура каталитических сайтов.
- 10. Модифицированные и нестандартные аминокислотные остатки в белках.

Раздел IV.

- 11. Белок-белковые взаимодействия. Межбелковые контакты в олигомерах и в кристаллах.
- 12. Молекулярное узнавание. Примеры организации сайтов белок-белкового и белок-нуклеинового узнавания.

Раздел V.

- 13. Конформационная подвижность и аллостерические эффекты в белках.
- 14. Возможности и основные направления использования мутагенеза и направленного изменения свойств белков.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5				
Результат								
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные				
	знаний		знания	систематические знания				
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое				
	умений	систематическое умение	отдельные пробелы умение	умение				
			(допускает неточности					
			непринципиального характера)					
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные	Сформированные навыки,				
(владения)	навыков	навыков	навыки, но не в активной форме применяемые при решении					

РЕЗУЛЬТАТ ОБУЧЕНИЯ по дисциплине (модулю)	ФОРМА ОЦЕНИВАНИЯ
Знать: актуальные направления химии живых систем, основные направления применения биополимеров и их компонентов в биологии и медицине Знать: закономерности и принципы строения, свойств и биологических функций биополимеров и их компонентов Знать: теоретические основы современных методов получения, анализа и моделирования структур биополимеров Знать: возможности и ограничения современных методов получения, анализа и моделирования структур биополимеров	мероприятия текущего контроля успеваемости, устный опрос на зачете
Уметь: выбирать направление экспериментального исследования, адекватное поставленной задаче Уметь: проводить поиск научной информации по строению и свойствам биополимеров, использовать для этой цели современные интернет-ресурсы, включая базы данных, специализированные компьютерные программы, ресурсы удаленных биоинформатических серверов	мероприятия текущего контроля успеваемости, устный опрос на зачете

Владеть: современными представлениями о взаимосвязи между структурой биополимеров и их биологическими функциями

Владеть: базовым арсеналом компьютерных программ для визуализации и анализа структур биополимеров

мероприятия текущего контроля успеваемости, устный опрос на зачете