Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр.. РАН, профессор

/С.Н. Калмыков/

«20» мая 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Химия элементоорганических соединений

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Органическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 года № 1770 (с изменениями по приказу № 1109 от 11.09.2019).

Год (годы) приема на обучение 2019/2020

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дисциплине (модулю)
ОПК-1.С. Способен решать	ОПК-1.С.3. Предлагает	Уметь анализировать научную литературу с целью выбора
современные проблемы	интерпретацию результатов	направления и методов, применяемых в исследовании по
фундаментальной и прикладной	собственных экспериментов с	теме выпускной квалификационной работы,
химии, используя методологию	использованием теоретических	Уметь: самостоятельно составлять план исследования
научного подхода и систему	основ элементоорганической	Владеть: навыками поиска, критического анализа,
фундаментальных химических	химии	обобщения и систематизации научной информации,
понятий и законов		постановки целей исследования и выбора оптимальных
		путей и методов их достижения
СПК-1.С. Способен использовать	спк-1.с.1 Предлагает возможные	Знать: ключевые закономерности структурного и
фундаментальные понятия	механизмы реакций с участием	электронного строения элементоорганических
органической химии и основные	элементоорганических	соединений; методы синтеза и понимать связь
теоретические подходы к изучению	соединений	реакционного поведения элементоорганических
механизмов реакций органических		соединений с их электронным строением.
соединений при решении задач		Уметь: на основании знания путей синтеза и направлений
профессиональной деятельности		превращения типичных элементоорганических
		соединений предлагать схемы синтеза новых соединений.
		Владеть: навыками анализа осуществленных в литературе
		схем синтеза сложных соединений и предлагать
		альтернативные подходы.

3. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 4 зачетных единицы, всего 144 часа, из которых 78 часа составляет контактная работа студента с преподавателем (36 часа занятия лекционного типа, 36 часов занятия семинарского типа, 2 часа – групповые консультации, 4 часа – промежуточный контроль успеваемости), 66 часов составляет самостоятельная работа учащегося.

4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен:

знать основные классы элементоорганических соединений, полученных и изученные к настоящему времени;

уметь объяснять электронное и структурное строение и свойства элементоорганических соединений; применять основные законы при обсуждении полученных результатов;

владеть теоретическими знаниями методов синтеза (химические эксперименты), установления структурного и электронного строения ключевых типов элементоорганических соединений (анализ элементоорганических соединений).

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое	Bcero	В том числе					
содержание разделов и тем дисциплины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы	Самостоятельная работа обучающегося,				
форма промежуточной аттестации по дисциплине		из них	часы из них				

		Занятия лекционного типа	Занятия семинарского типа	Групповые консультации	Индивидуальные консультации	Учебные занятия, направленны е на проведение текущего контроля успеваемост и, промежуточ ной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Раздел 1. Химия органических соединений непереходных металлов Соединения непереходных металлов с высокой полярностью связи металлуглерод	12	4	4				8	4		4
Раздел 2. Химия органических соединений непереходных металлов. Соединения непереходных металлов и элементов с низкой полярностью связей C-Э	26	10	10				20	6		6
Раздел 3. Теоретические представления о природе связи и закономерностях структурного строения координационных соединений переходных и	6	2	2				4	2		2

непереходных металлов и элементов								
Раздел 4. Химия органических соединений переходных металлов.	64	20	20	2		42	22	22
Итоговая аттестация <u>экзамен</u>	36				4	4		32
Итого	144	36	36	2	4	78	20	66

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Конспект лекций.

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. К. Эльшенбройх, «Металлоорганическая химия», М, «Бином. Лаборатория знаний», 2011
- 2. Housecroft C.E., Sharpe A.G. Inorganic Chemistry, 2-nd Ed., N.Y., Prentice Hall 2005.
- 3. «Методы элементоорганической химии». Изд. «Наука» 1965-1990
- 4. Comprehensive Organometallic Chemistry. Elsevier, 1th Ed-1982; 2th Ed-1995; 3th-Ed-2007
- 5. Колмен Дж., Хигедас Л., Нортон Дж., Финке Р. «Металлоорганическая химия переходных металлов», М, Мир, 1989
- 6. Харгиттаи И., Харгиттаи М, Симметрия глазами химика М, Мир, 1989

Дополнительная литература

- 1. Cotton F.A. Chemical application of group theory 3-rd Ed. N.Y., A Willey-Interscience Publication 1990
- 2. Эткинс П. Физическая химия М, Мир 1980
- 3. К. Эльшенбройх, «Металлоорганическая химия», М, «Бином. Лаборатория знаний», 2011
- 4. F. A. Cotton, G. Wilkinson, «Advanced inorganic chemistry», 6th Edition.

Периодическая литература:

Журналы: Известия РАН Сер. Химич., Synthesis, Tetrahedron, Tetrahedron Letters, J. Org. Chem., J. Amer. Chem. Soc., Angew. Chem., Org. Lett.

Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами), техникой для демонстрации презентаций

- 9. Язык преподавания русский
- 10. Преподаватели: Леменовский Дмитрий Анатольевич, д.х.н., профессор

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Полный перечень вопросов *по* «Химии элементоорганических соединений» для самостоятельного обучения и к экзамену:

- 1. Как получить PhCH₂CH₂BMe₂?
- 2. В чем разница в строении Ph₃Tl и Ph₂TlCl?
- 3. Какие вещества ассоциированы в кристалле и растворе: PhMgBr; PhLi; PhAlCl₂; Ph₂Hg; PhBCl₂; PhHgCl?
- 4. Что получится при реакции Ph₂Hg и TlCl?
- 5. Что получится при действии Me₂AlH на фенилацетилен?
- 6. В чем разница в строении ацетилацетоната натрия и ацетилацетоната SiMe₃?

- 7. Как получить $Ph_2C(Ch_3)BMe_2$?
- 8. Что получится при реакции дифенилртути и TlCl₃?
- 9. Что получится при действии натрия на Me₃SnCl?
- 10. Что получится при действии избытка ВН3 на фенилацетилен?
- 11. Что получится, если на пиридин подействовать BuLi с одной стороны и PhSnCl, с другой?
- 12. Что получится при реакции Ph₂SnMe₂ и HgCl₂ в соотношении 1:1?
- 13. Как получить (Me₃Si)₂?
- 14. Напишите продукты реакции Me₃SiCl и отдельно Me₃SiJ c PhLi.
- 15. В чем разница в строении Et₃Al b Et₃B?
- 16. Что получится при действии Ph₂SnMe₂ на HgCl₂?
- 17. Напишите продукт реакции Ph₂Hg и SnCl₄.
- 18. В чем разница в строении Et₃Al в эфире и в смеси эфира и тетраметилэтилендиамина?
- 19. Предложите способы синтеза (Е)-1,2-(дифенилэтилен)диметилбора и (Z)-1,2-(дифенилэтилен)диметилбора.
- 20. Как получить дифенилмагний?
- 21. Механизм реакции Штаудингера. Типы различных фосфоранов. Приведите примеры.
- 22. Как получить винилокситриметилолово?
- 23. Что получится при растворении и кристаллизации из пиридина метиллития?
- 24. Как получить триметилацетонилолово?
- 25. Синтез ароматических фосфинов. Две основные стратегии.
- 26. Что получится при кристаллизации $(Me_2N)_2Me_2Si$ из эфира; о-ксилола?
- 27. Что получится при взаимодействии бутиллития с п-бромтолуолом?
- 28. Правило 18-ти электронов. Значение этого правила в химии органических соединений переходных металлов. Типичные примеры соединений, подчиняющихся и не подчиняющихся правилу 18-ти электронов.
- 29. Простейшие олефиновые комплексы переходных металлов. Природа связи олефин-металл; модель ДЧД; методы их синтеза; важнейшие реакции.
- 30. Классические сэндвичевые комплексы переходных металлов; металлоцены. Природа связи металл-кольцо в сэндвичевых комплексах. Электронное строение металлоценов, причины несоблюдения правила 18-ти электронов.
- 31. Простейшие карбонильные комплексы металлов первого переходного ряда. Строение молекул; методы синтеза; важнейшие реакции, протекающие с сохранением связи металл-углерод и с разрушением этой связи. Природа связи металл-карбонил.
- 32. Соединения поздних переходных металлов и пост-переходных металлов. Простейшие типы комплексов. Соединения с необычным валентным состоянием металла и соединения со связями М-М.

- 33. Представления о 🛽-аллильных комплексах переходных металлов. Примеры реакций, в ходе которых образуются 🗓 🖺 аллильные комплексы. Примеры превращений, в ходе которых 🖺 🖺 аллильный (циклопентадиенильный) лиганд возникает в координационной сфере металла или превращается в них в лиганды других типов.
- 34. Сравнительная характеристика строения, природа связи и основные реакционные превращения ферроцена, манганоцена, хромоцена и ванадоцена
- 35. Водородные комплексы переходных металлов. Важнейшие типы соединений, отличающихся характером связывания (координации) водорода с металлом. Методы синтеза простейших металл-гидридных комплексов с М-Н терминально связанным водородом. Свойства этих соединений. Соединения с углеводородным лигандом: строение, физические и химические свойства. Превращения одних структурных типов водородных комплексов в другие.

Темы семинарских занятий:

- 1. Теоретические представления о природе связи М-С-М в электроннодефицитных соединениях непереходных металлов.
- 2. Методы синтеза литийорганических соединений
- 3. Строение элементоорганических соединений с высокой полярностью связи М-С в кристалле, в растворах и в газовой фазе.
- 4. Органические соединения алюминия RAIX₂; R₂AIX; R₃Al. Важнейшие лабораторные и промышленные методы синтеза.
- 5. Побочные и конкурентные реакции соединений с высокой полярностью связи М-С.
- 6. Органические соединения таллия: два семейства соединений Tl(I) и Tl(III). Закономерности строения. Методы синтеза соединений Tl(I) и Tl(III).Взаимные превращения в соединениях Tl(I) и Tl(III).
- 7. Основные методы синтеза соединений RHgX и R₂Hg. Структурно жесткие и структурно нежесткие соединения.
- 8. Соединения кремния, германия и олова со связями Si-Si; Ge-Ge; Sn-Sn и Si=Si; Ge=Ge; Sn=Sn. Методы синтеза; особенности структурного строения; сравнительные данные по энергиям связей.
- 9. Правило 18-ти электронов. Условия и причины нарушения правила 18-ти электронов. Значение этого правила в химии органических соединений переходных металлов. Теорема Яна-Теллера и теорема Купменса.
- 10. Аллильные комплексы переходных металлов. Методы синтеза, строение. Реакции возникновения и превращения аллильного лиганда в координационной сфере металла.
- 11. Типы сэндвичевых соединений.
- 12. Методы синтеза простейших металл-гидридных комплексов с М-Н терминально связанным водородом. Свойства этих соединений.
- 13. Соединения со связями металл-металл в ряду переходных металлов.
- 14. Кластерные соединения металлов.
- 15. Карбонильные комплексы переходных металлов. Строение молекул; методы синтеза; важнейшие реакции, протекающие с сохранением связи металл-углерод и с разрушением этой связи. Природа связи металл-карбонил.

- 16. Олефиновые комплексы переходных металлов. Природа связи олефин-металл; модель ДЧД; методы их синтеза; важнейшие реакции.
- 17. Ацетиленовые комплексы переходных металлов.
- 18. Соединения переходных металлов с сигма-связью металл-углерод и карбеновые комплексы.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5				
Результат								
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные				
	знаний		знания	систематические знания				
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое				
	умений	систематическое умение	отдельные пробелы умение	умение				
			(допускает неточности					
			непринципиального характера)					
Навыки	Отсутствие	Наличие отдельных	В целом, сформированные	Сформированные навыки,				
(владения)	навыков	навыков	навыки, но не в активной форме	применяемые при решении				
				задач				

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ		
по дисциплине (модулю)			
знать: ключевые закономерности структурного и электронного строения	мероприятия текущего контроля		
элементоорганических соединений; методы синтеза и понимать связь реакционного	успеваемости, устный опрос на экзамене		
поведения элементоорганических соединений с их электронным строением.			
Уметь на основании знания путей синтеза и направлений превращения типичных	мероприятия текущего контроля		
элементоорганических соединений предлагать схемы синтеза новых соединений.	успеваемости, устный опрос на экзамене		
владеть: навыками анализа осуществленных в литературе схем синтеза сложных	мероприятия текущего контроля		
соединений и предлагать альтернативные подходы.	успеваемости, устный опрос на экзамене		