Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«20» мая 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Структура полимеров

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Высокомолекулярные соединения

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 года № 1770 (с изменениями по приказу № 1109 от 11.09.2019).

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дисцип- лине (модулю)
СПК-1.С Владеет современными тео-	СПК-1.С.1 Предлагает возможные рас-	Знать: теоретические основы методов исследова-
ретическими и экспериментальными	четно-теоретические методы изучения	ния структуры полимеров
методами исследования высокомоле-	полимерных систем при решении по-	
кулярных соединений и материалов	ставленной задачи	
на их основе, способен использовать	СПК-1.С.2 Предлагает возможные экс-	Уметь: предлагать методы исследования структуры
эти методы при решении задач в про-	периментальные методы изучения по-	полимеров в соответствии с заданной научной зада-
фессиональной деятельности	лимерных систем при решении постав-	чей
	ленной задачи	Владеть: способностью использовать экспе-
		риментальные и теоретические методы при
		исследовании структуры полимеров
СПК-2.С. Способен синтезировать вы-	СПК-2.С.2 проводит химическую моди-	Знать: взаимосвязь между процессами синтеза и мо-
сокомолекулярные соединения и про-	фикацию ВМС с использованием совре-	дификации полимеров и их структурой
водить их химическую модификацию	менных экспериментальных методов	Уметь: прогнозировать структуру полимеров исходя
с использованием современных экс-	химии полимеров	из способа их синтеза или модификации
периментальных методов химии по-		Владеть: способностью предлагать методы синтеза
лимеров		и модификации полимеров с целью получения веще-
		ства с заданной структурой
СПК-3.С. Способен использовать тео-	СПК-3.С.1 Использует теоретические	Знать: взаимосвязь между свойствами растворов по-
ретические основы физической химии	основы физической химии растворов	лимеров и их структурой
растворов высокомолекулярных со-	высокомолекулярных соединений при	Уметь: прогнозировать структуру полимеров с ис-
единений, в том числе полиэлектро-	планировании исследований ВМС	пользованием знанийо свойствах их растворов
литов, в практической деятельности		Владеть: способностью использовать структурный
		подход при исследовании растворов полимеров

СПК А С В да доот сорромомии ими дрод	СПК-4.С.1 Использует корреляции	2 rom L OCHODI L MO HOMUHADUON IL HO HMO HOMUHADUON		
СПК-4.С. Владеет современными пред-				
ставлениями о структуре и физиче-	«структура – свойство» при получении структуры полимеров			
ских (в том числе механических) свой-	полимерных материалов с заданными	Уметь: прогнозировать надмолекулярную структуру		
ствах полимеров, способность приме-	свойствами	полимера исходяиз молекулярной		
нять их на практике		Владеть: способностью применять на практике зна-		
		ния о структуре полимеров во взаимосвязи с их ме-		
		ханическими свойствами		
СПК-5.С. Готов применять знание тео-	СПК-5.С.1 Предлагает способы масшта-	Знать: взаимосвязь между технологией переработки		
ретических основ современной техно-	бирования лабораторных методик син-	полимеров и ихструктурой		
логии синтеза полимеров и перера-	теза полимеров и переработки поли-	- Уметь: прогнозировать структуру полимерных		
ботки полимерных материалов в про-	мерных материалов	материалов в тех илииных технологических усло-		
фессиональной деятельности		виях		
		Владеть: способностью использовать знания о		
		структуре полимеров при разработке технологии		
		получения и переработки полимеров		

3. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 3 зачетных единицы, всего 108 часов, из которых 76 часов составляет контактная работа студента с преподавателем (36 часов занятия лекционного типа, 36 часов занятия семинарского типа, 2 часа – групповые консультации, 2 часов – промежуточный контроль успеваемости), 32 часа составляет самостоятельная работа студента.

4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Обучающийся должен

знать: основы науки о полимерах;

уметь: работать с научной литературой и лекционным материалом, анализировать графики функций, проводить элементарные математические преобразования и вычисления;

владеть: методами математической обработки экспериментальных величин, в том числе с использованием математической статистики.

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	Всего	В том числе		
	(часы)	Контактная работа (работа во взаимодействии с препо-	Самостоятельная работа	
ны (модуля),		давателем), часы	обучающегося, часы	
		из них	из них	

		Занятия лекци- онного типа	Занятия семинар- ского типа	Групповые кон- сультации	Индивидуальные консультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение до- машних заданий	Подготовка рефе- ратов и т.п	Bcero
Структура макромолекул	12	8	4	0	0	0	12	0	0	0
Структура аморфных полимеров	8	4	4	0	0	0	8	0	0	0
Структура кристаллических полимеров	52	24	28	0	0	0	52	0	0	0
Промежуточная аттестация <u>экзамен</u>	36			2		2	4		32	32
Итого	108	36	36	2	0	2	76	0	32	32

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.
- 7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Студентам предоставляется программа курса, план занятий и задания для самостоятельной работы, презентации к лекционным занятиям.

- 8. Ресурсное обеспечение:
 - Перечень основной и вспомогательной учебной литературы ко всему курсу

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

- 1. Высокомолекулярные соединения (под ред. А.Б. Зезина) Учебник, М.: Юрайт, 2016.
- 2. Методические пособия по разделам науки о полимерах на сайте кафедры http://vmsmsu.ru/what.html

Дополнительная литература

- 1. Ю. Д. Семчиков. Высокомолекулярные соединения. 5-е изд., стереотип. М.: АКАДЕМИЯ, 2010.
- 2. В.В.Киреев. Высокомолекулярные соединения. Учебник для бакалавров. М., изд-во "Юрайт", 2013.
- 3. Гросберг А.Ю., Хохлов А.Р.. Полимеры и биополимеры с точки зрения физики. М. Интеллект, 2010.
- 4. Кленин В.И., Федусенко И.В. Высокомолекулярные соединения. Изд.2, испр., 2013.
- 5. Н.Г. Рамбиди. Структура полимеров от молекул до наноансамблей. М., Интеллект, 2009.
- 6. В.Н.Кулезнёв, В.А.Шершнёв Химия и физика полимеров, Учебник М. КолосС, 2007
- 7. Энциклопедия полимеров, М.Изд. БСЭ, т.т.1-3 1977
- 8. Химическая энциклопедия, Изд. БРЭ, т.т. 1-5, 1988-1998
- 9. Научно-популярные статьи на сайте кафедры http://welcome.vmsmsu.ru/papers.html
- Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами)
- 9. Язык преподавания русский
- 10. Преподаватели: к.х.н. с.н.с. Аржакова О.В., к.х.н. с.н.с. Большакова А.В.

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Теоретические контрольные вопросы и практические контрольные задания

- 1. Что такое "структура" полимеров? В чем состоит различие между понятиями конформация и конфигурация полимера? Дать примеры.
- 2. Оцените плотность заполнения макромолекулярного клубка сегментами полимерной цепи.
- 3. Понятие гибкости полимерной цепи. Механизмы гибкости. Дать примеры.
- 4. Идеальная полимерная цепь. Размер клубка.
- 5. Сегмент Куна. Гибкие и жесткие цепи. Гауссово распределение длин векторов между концами цепей для идеальной цепи. Дать примеры.
- 6. Аморфные полимеры. Темнопольная электронная микроскопия в применении для исследования структуры аморфных полимеров.
- 7. Надмолекулярные структуры в полимерах. Основные типы. Дать примеры.
- 8. Общие представления о структуре ориентированных аморфно-кристаллических полимеров. Дать примеры.
- 9. Жидкокристаллические полимеры. Специфика строения и свойств.
- 10. Обоснуйте образование складчатой конформации макромолекул в кристалле в рамках основных положений кинетической теории кристаллизации полимеров.

- 11. Обоснуйте соотношение для скорости кристаллизации расплава полимера на основании теории абсолютных скоростей реакций. Обоснуйте существование температурной зависимости скорости кристаллизации расплава полимера.
- 12. Выведите соотношение для продольных и поперечных размеров l^*_g и a^* критического зародыша кристаллизации для механизма вторичного зародышеобразования, и соответствующее соотношение для величины энергетического барьера его образования ΔF^* .
- 13. Выведите соотношение для продольных и поперечных размеров l*g и a* критического зародыша кристаллизации для механизма первичного зародышеобразования, и соответствующее соотношение для величины энергетического барьера его образования ΔF^* .
- 14. Сравните размеры кристаллов полиэтилена и полипропилена, закристаллизованные при одинаковом переохлаждении $\Delta T = 10^{\circ}$ C.
- 15. Сравните размеры кристаллов полиэтилена и полипропилена, закристаллизованные при одинаковой температуре Т = 120 °С.
- 16. Опишите известные вам методы экспериментального определения степени кристалличности полимера. Дать примеры.
- 17. Выведите соотношение для температуры плавления полимерного кристалла с продольным (в направлении макромолекулярной цепи) размером L.
- 18. Сравните температуры плавления кристаллов полиэтилена с высотой складки 10 и 50 нм.
- 19. Как можно экспериментально определить равновесную температуру плавления полимера?

Вопросы к экзамену

- 1. Гибкость и конформация макромолекул. Равновесные конформации.
- 2. Статистические характеристики макромолекул.
- 3. Феноменологическая теория кристаллизации полимеров. Основные соотношения, недостатки теории.
- 4. Кинетическая теория кристаллизации полимеров со складыванием макромолекул. Зародышеобразование: гомогенные и гетерогенные зародыши кристаллизации, первичное и вторичное зародышеобразование.
- 5. Кинетика и молекулярные механизмы первичной и вторичной кристаллизации.
- 6. Рекристаллизационные процессы при отжиге полимеров.
- 7. Плавление полимеров. Экспериментальная и равновесная температуры плавления.
- 8. Надмолекулярные структуры в полимерах.
- 9. Современные представления о структуре аморфных полимеров.
- 10. Жидкокристаллические полимеры. Особенности строения и свойств. Классификация.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)							
Оценка	2	3	4	5			
Результат							

Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематические
	знаний		знания	знания
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-
	умений	систематическое умение	отдельные пробелы умение (допус-	ние
			кает неточности непринципиаль-	
			ного характера)	
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-
ния)	выков	ков	но не в активной форме	няемые при решении задач

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: теоретические основы методов исследования структуры полимеров	мероприятия текущего контро-
Знать: взаимосвязь между процессами синтеза и модификации полимеров и их структурой	ля успеваемости, устный опрос
Знать: взаимосвязь между свойствами растворов полимеров и их структурой	на экзамене
Знать: основы молекулярной и надмолекулярной структуры полимеров	
Знать: взаимосвязь между технологией переработки полимеров и их структурой	
Уметь: предлагать методы исследования структуры полимеров в соответствии с заданной научной за-	мероприятия текущего контро-
дачей	ля успеваемости, контрольные
Уметь: прогнозировать структуру полимеров исходя из способа их синтеза или модификации	вопросы, устный опрос на экза-
Уметь: прогнозировать структуру полимеров с использованием знаний о свойствах их растворов	мене
Уметь: прогнозировать надмолекулярную структуру полимера исходя из молекулярной	
Уметь: прогнозировать структуру полимерных материалов в тех или иных технологических условиях	
Владеть: способностью использовать экспериментальные и теоретические методы при исследовании	мероприятия текущего контро-
структуры полимеров	ля успеваемости, практические
Владеть: способностью предлагать методы синтеза и модификации полимеров с целью получения ве-	контрольные задачи, устный
щества с заданной структурой	опрос на экзамене
Владеть: способностью использовать структурный подход при исследовании растворов полимеров	
Владеть: способностью применять на практике знания о структуре полимеров во взаимосвязи с их ме-	
ханическими свойствами	
Владеть: способностью использовать знания о структуре полимеров при разработке технологии полу-	
чения и переработки полимеров	