Федеральное государственное бюджетное образовательное учреждение высшего образования

Московский государственный университет имени М.В. Ломоносова Химический факультет

> УТВЕРЖДАЮ Декан химического факультета,

> > Чл.-корр. РАН, профессор

/С.Н. Калмыков/ «31» августа 2021 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Лабораторные работы по неорганической химии

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Аналитическая химия, Биоорганическая химия, Высокомолекулярные соединения, Коллоидная химия, Лазерная химия, Медицинская химия и тонкий органический синтез, Нанобиоматериалы и нанобиотехнологии, Неорганическая химия, Нефтехимия, Органическая химия, Радиохимия, Физическая химия, Фундаментальная и прикладная энзимология, Химия ионных и молекулярных систем, Химическая кинетика, Химия высоких энергий, Химия и технология веществ и материалов, Химия твердого тела, Электрохимия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №7 от 07.07.2021)

Москва 2021

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 года № 1770.

Год (годы) приема на обучение 2019/2020, 2020/2021, 2021/2022

- 1. Место дисциплины (модуля) в структуре ООП: базовая часть ООП, блок ХД, модуль «Неорганическая химия».
- 2. Планируемые результаты обучения по дисциплине (модулю), соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников), соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП указано в Общей характеристике ОПОП.

Компетенция	Индикаторы достижения	Планируемые результаты обучения по дисцип- лине (модулю)
УК-7.С Способен использовать со-	УК-7.С.2 Реализует навыки обработки и	Уметь: пользоваться программными средствами,
временные информационно-	представления информации с использо-	автоматизирующими обработку данных (управле-
коммуникационные технологии в	ванием современных компьютерных тех-	ние базами данных, статистическая обработка, ви-
академической и профессиональной	нологий	зуализация и т.п.)
сферах		
ОПК-1.С. Способен решать совре-	ОПК-1.С.3. Предлагает интерпретацию	Уметь: использовать теоретические модели для
менные проблемы фундаментальной	результатов собственных экспериментов	обоснования строения и реакционной способности
и прикладной химии, используя ме-	и расчетно-теоретических работ с исполь-	неорганических соединений
тодологию научного подхода и сис-	зованием теоретических основ традици-	
тему фундаментальных химических	онных и новых разделов химии	
понятий и законов		
ОПК-2.С. Способен проводить хими-	ОПК-2.С.1. Работает с химическими веще-	Знать: правила техники безопасности при работе в
ческий эксперимент с соблюдением	ствами с соблюдением норм техники	химической лаборатории
норм безопасного обращения с хи-	безопасности	Уметь: работать с химическими веществами с со-
мическими материалами, адекватно		блюдением норм техники безопасности
оценивая возможные риски с учетом	ОПК-2.С.2. Проводит синтез веществ и	Уметь: выполнять стандартные операции при
свойств веществ	материалов разной природы с использо-	синтезе неорганических веществ и материалов
	ванием имеющихся методик	Уметь: проводить синтез неорганических веществ
		и материалов по заданной методике
		Уметь: оценить выход целевого продукта при не-
		органическом синтезе, объяснить возможные при-
		чины его отличия от теоретически возможного
	ОПК-2.3.С. Проводит стандартные опера-	Уметь: корректно интерпретировать результаты
	ции для определения химического и фа-	определения химического и фазового состава ве-
	зового состава веществ и материалов на	ществ и материалов различной природы
	их основе	Владеть: стандартными инструментальными ме-

		тодами исследования веществ и материалов
ОПК-3.С. Владеет методами регист-	ОПК-3.С.2. Систематизирует и анализиру-	Уметь: предложить методы идентификации фазо-
рации и обработки результатов экс-	ет результаты химических эксперимен-	вого состава и структуры неорганических веществ
периментов, в том числе, получен-	тов, наблюдений, измерений	
ных на современном научном обору-		
довании		
ОПК-9.С. Способен представлять ре-	ОПК-9.С.1. Представляет результаты ра-	Знать: требования к оформлению и представле-
зультаты профессиональной дея-	боты в виде отчета по стандартной форме	нию результатов синтетических работ в области
тельности в устной и письменной	на русском языке	неорганической химии
форме в соответствии с нормами и		Уметь: грамотно протоколировать и представлять
правилами, принятыми в профес-		результаты неорганического синтеза
сиональном сообществе.		Владеть: навыками оформления протоколов неор-
		ганического синтеза

- 3. Объем дисциплины (модуля) в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся: Объем дисциплины (модуля) составляет 9 зачетных единиц, всего 324 часа, из которых 294 часа составляет контактная работа студента с преподавателем (288 часов лабораторные занятия, 6 часов занятия для текущего контроля), 30 часов составляет самостоятельная работа учащегося.
- 4. Входные требования для освоения дисциплины (модуля), предварительные условия.

Для того чтобы формирование данной компетенции было возможно, обучающийся должен:

знать: основные свойства химических элементов и их соединений, закономерности химических равновесий и процессов в гомогенных и гетерогенных системах;

уметь: проводить простейшие операции с химическими веществами

5. Содержание дисциплины (модуля), структурированное по темам.

жание разделов и тем дисциплины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы из них				Самостоятельная рабо- та обучающегося, часы из них				
форма промежуточной аттестации по дисциплине (модулю)		Занятия лекционного типа	Лабораторные работы	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка реферато- вит.п	Bcero
Тема 1. Теоретические основы неорганической химии	50		44				44			6
Тема 2. Химия непереходных эле- ментов	110		100				100			10
Тема 3. Химия комплексных соединений и переходных элементов	158		144				144			14
Промежуточная аттестация <u>зачет</u>	6						6			
Итого	324		288				294			30

Список лабораторных работ

№ раз-	№ЛР	Наименование лабораторных работ			
дела					
1	1	Іерекристаллизация солей.			
		Очистка летучих твердых веществ методом сублимации.			
		Очистка воды от растворенных в ней солей методом перегонки.			

		Взаимодействие хлорида железа(III) с роданидом аммония.
		Исследование равновесия хромат-дихромат.
		Влияние концентрации реагирующих веществ и температуры на скорость взаимодействия тиосульфата на-
		трия с серной кислотой.
	2	Пересыщенные растворы.
		Определение растворимости веществ в воде весовым методом.
		Электропроводность растворов.
		Сравнение силы кислот и оснований.
		Гидролиз солей.
		Произведение растворимости.
2	3	Получение водорода.
		Восстановление водородом оксидов металлов.
		Получение и свойства кислорода.
		Получение и свойства пероксида водорода.
		Гидроксиды щелочных элементов.
		Получение и свойства гидрокарбоната натрия.
		Получение и свойства карбоната натрия.
		Малорастворимые соли лития и калия.
		Свойства магния.
		Получение и свойства гидроксида магния.
		Карбонаты магния.
		Магнийаммонийфосфат.
		Соли кальция, стронция, бария.
		Свойства алюминия.
		Получение и свойства гидроксида алюминия.
		Соли алюминия.
		Свойства бора.
		Окрашенные перлы буры.
		Оксид углерода (IV).
		Соли угольной кислоты.
		Оксид углерода (II).
		Свойства кремния (отношение к щелочам и кислотам, кроме плавиковой).
		Гидролиз соединений кремния.
		Получение и свойства олова.

		Соединения олова.
		Получение и свойства свинца.
		Оксиды и гидроксиды свинца.
		Соли свинца и их свойства.
3	4	Получение и свойства аммиака.
		Получение аммиака и растворение его в воде.
		Соли аммония.
		Свойства гидразина и гидроксиламина.
		Получение и свойства азотистой кислоты.
		Свойства разбавленной азотной кислоты.
		"Царская водка".
		Термическая устойчивость нитратов.
		Получение белого фосфора.
		Фосфорный ангидрид.
		Свойства метафосфорной кислоты и ее солей.
		Свойства пирофосфорной кислоты и ее солей.
		Получение (из фосфорного ангидрида и фосфорита) и свойства ортофосфорной кислоты и ее солей.
		Свойства сурьмы.
		Оксид сурьмы (III).
		Оксид сурьмы (V).
		Сульфиды и тиосоли сурьмы (III) и (V).
		Получение и свойства висмута.
		Свойства соединений висмута (III).
		Получение и свойства соединений висмута (V).
	5	Получение модификаций серы и исследование их свойств.
		Сероводород.
		Сульфиды металлов.
		Получение и свойства оксида серы (IV).
		Серная кислота и ее соли.
		Получение и свойства тиосульфата натрия.
	6	Реакции образования хлора.
		Получение хлора действием соляной кислоты на перманганат калия или оксид марганца (IV).
		Свойства хлора.
		Получение брома и его свойства.

		Получение йода и его свойства.
		Малорастворимые галогениды.
		Окисление галогенид-ионов.
		Взаимодействие хлорида натрия, бромида и иодида калия с концентрированными серной и ортофосфорной
		кислотами.
		Получение хлороводорода и его взаимодействие с водой ("фонтанчик").
		Получение бромо- или иодоводорода.
4	7	Свойства титана.
		Титановая кислота.
		Пероксидные соединения титана.
		Получение раствора сульфата титана(III).
		Свойства соединений титана(III).
		Получение и свойства оксида ванадия(V).
		Поливанадаты и ванадиевая кислота.
		Соли ванадиевой кислоты.
		Пероксидные соединения ванадия.
		Соединения ванадия низших степеней окисления.
5	8	Получение и свойства хлорида хрома(II).
		Получение и свойства оксида хрома(III).
		Получение и свойства гидроксида хрома (III).
		Свойства солей хрома (III).
		Свойства солей хромовых кислот.
		Получение и свойства оксида хрома(VI).
		Пероксидные соединения хрома.
		Молибденовый и вольфрамовый ангидриды.
		Молибденовые и вольфрамовые кислоты.
		Тиосоли и сульфиды молибдена и вольфрама.
		Восстановление соединений молибдена(VI) и вольфрама(VI).
		Пероксидные соединения молибдена и вольфрама.
		Гидроксид марганца (II).
		Соли марганца(II).
		Соединения марганца(III-VI).
		Свойства перманганата калия.
6	9	Свойства железа.

		Гидроксиды железа(II), железа(III), кобальта(II), кобальта(III), никеля(II) и никеля(III).
		Свойства солей железа (II).
		Свойства солей железа (III).
		Получение и свойства ферратов(VI).
		Свойства солей кобальта(II).
		Оксиды кобальта.
		Свойства солей никеля(II).
		Оксид никеля(III).
		Аммиакаты кобальта и никеля.
		Гексанитритокобальтат(III) калия.
7	10	Получение и свойства меди.
		Получение и свойства оксида меди(I).
		Получение и свойства галогенидов меди(I).
		Получение и свойства оксида и гидроксида меди(II).
		Свойства солей меди(II).
		Получение и свойства серебра.
		Оксиды серебра.
		Галогениды серебра.
		Серебрение.
		Оксиды цинка и кадмия.
		Гидроксиды цинка и кадмия.
		Сульфиды цинка и кадмия.
		Оксиды ртути(I) и (II).
		Соли ртути(I) и (II).
		Реактив Несслера.
	11	Получение и свойства гидроксида церия(III).
		Соли церия (III).
		Получение и свойства гидроксида церия (IV).
		Соли церия (IV).
		Получение и свойства гидроксида лантана(III).
		Соли лантана (III).
		Гексанитратоцеррат(IV) аммония.
		Оксид празеодима (III).

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.
- 7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

8. Ресурсное обеспечение:

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

Основная литература (базовые учебники выделены курсивом, они имеются в библиотеке химического факультета). Контрольные экземпляры в электронном и бумажном виде хранятся на кафедре неорганической химии (учебно-методический кабинет кафедры неорганической химии).

- 1. Ю.Д. Третьяков, Л.И. Мартыненко, А.Н. Григорьев, А.Ю. Цивадзе. Неорганическая химия. Химия элементов. Учебник в 2 томах. М.: МГУ и ИКЦ «Академкнига», 2007.
- 2. М.Е. Тамм, Ю.Д. Третьяков. Неорганическая химия. Т. 1. Физико-химические основы неорганической химии. М.: Изд. центр «Академия», 2004
- 3. А.А. Дроздов, В.П. Зломанов, Г.Н. Мазо, Ф.М. Спиридонов. Под ред. Ю.Д. Третьякова. Неорганическая химия. Т. 2. Химия непереходных элементов. М.: Изд. центр «Академия», 2004.
- 4. А.А. Дроздов, В.П. Зломанов, Г.Н. Мазо, Ф.М. Спиридонов. Под ред. Ю.Д. Третьякова. Неорганическая химия. Т. З. Химия переходных элементов. Кн. 1. М.: Изд. центр «Академия», 2007.
- 5. А.А. Дроздов, В.П. Зломанов, Г.Н. Мазо, Ф.М. Спиридонов. Под ред. Ю.Д. Третьякова. Неорганическая химия. Т. 3. Химия переходных элементов. Кн. 2. М.: Изд. центр «Академия», 2007.
- 7. Е.И. Ардашникова, Г.Н. Мазо, М.Е. Тамм. Под ред. Ю.Д. Третьякова Сборник задач по неорганической химии. М.: Мир, 2004.
- 8. Ю.М. Коренев, А.Н. Григорьев, Н.Н. Желиговская, К.М. Дунаева. Задачи и вопросы по общей и неорганической химии с ответами и решениями. М.: Мир, 2004.

- 9. Е.И. Ардашникова, Г.Н. Мазо, М.Е. Тамм. Вопросы и задачи к курсу неорганической химии. М.: МГУ, 2000.
- 10. Савинкина Е.В., Михайлов В.А., Киселёв Ю.М., Сорокина О.В., Аликберова Л.Ю., Давыдова М.Н. Общая и неорганическая химия: в 2 т. Т. 1: Законы и концепции. Издательство "Лаборатория знаний". 2018.
- 11. Никольский А. Б., Суворов А. В. Общая и неорганическая химия в 2 т. 6-е изд., испр. и доп. Учебник для вузов. Юрайт. 2021.

Дополнительная литература

- 1. Н.С. Ахметов. Общая и неорганическая химия. М.: Высшая школа, 2001.
- 2. Ф. Коттон, Дж. Уилкинсон. Современная неорганическая химия: в 3 т. М.: Мир, 1969.
- 3. Дж. Хьюи. Неорганическая химия. Строение вещества и реакционная способность. М.: Химия, 1987.
- 4. Д. Шрайвер, П. Эткинс. Неорганическая химия. М.: Мир, 2004.
- 5. В.В. Скопенко, А.Ю. Цивадзе, Л.И. Савронский, А.Д. Гарновский. Координационная химия. М.: ИКЦ «Академкнига», 2007.
- 6. Г.Грей. Электроны и химическая связь. М.: Мир, 1967.

Методические указания к лабораторным занятиям

- 1. В.А. Алешин, К.М. Дунаева, А.И. Жиров, Ю.М. Киселев, Ю.М. Коренев, Н.А. Субботина, М.Е. Тамм. Под ред. Ю.Д. Третьякова Практикум по неорганической химии. М.: Изд. центр «Академия», 2004.
- 2. В.А.Алешин (составитель). Электронные лабораторные тетради. http://vle3.chem.msu.ru/

Программное обеспечение современных информационных компьютерных технологий

- 1. В.А.Алешин (составитель). Электронные лабораторные тетради. http://vle3.chem.msu.ru/
- 2. В.А.Алешин (составитель). Тестовые вопросы по неорганической химии (ЭВМ-контроль). http://vle3.chem.msu.ru/

Лицензионное программное обеспечение для обработки результатов и подготовки печатных текстов – Microsoft Office.

• Описание материально-технической базы. Занятия проводятся в практикумах по неорганической химии.

Оборудование:

Устройство для сушки посуды - 3 шт.; Весы - 4 шт.; Колбонагреватель - 2 шт.; Аквадистиллятор - 1 шт.; Кондуктометр - 1 шт.; Микроскоп - 3 шт.; Морозильник - 1 шт.; рН-метр-иономер - 4 шт.; Сушильный шкаф - 3 шт.; Печь - 10 шт.;

Устройство для сушки посуды - 4 шт.; Весы - 3 шт.; Колбонагреватель - 4 шт.; Аквадистиллятор - 1 шт. Кондуктометр - 1 шт.; Ванна ультразвуковая - 1 шт.; Микроскоп - 2 шт.; Морозильник - 1 шт.; Холодильник - 1 шт.; рН-метр-иономер - 3 шт.; Сушильный шкаф - 3 шт.; Печь - 12 шт.

Спектрофотометр - 2 шт.; Устройство для сушки посуды - 6 шт.; Весы лабораторные электронные - 19 шт.; Весы аналитические - 5 шт.; Колбонагреватель - 25 шт.; Генератор водорода - 5 шт.; Манометр - 1 шт.; Центрифуга - 2 шт.; Мешалка магнитная - 20 шт.; Аквадистиллятор - 3 шт.; Кондуктометр - 2 шт.; Источник питания - 4 шт.; Ванна ультразвуковая - 2 шт.; Насос - 2 шт.; Микроскоп - 4 шт.; Морозильник - 1 шт.; Холодильник - 1 шт.; Калориметр - 2 шт.; рН-метр-иономер - 8 шт.; Сушильный шкаф - 3 шт.; Печь - 25 шт.; Титратор - 2 шт.

- 9. Язык преподавания русский
- 10. Преподаватели: 2 преподавателя в каждой группе потока сотрудники кафедры неорганической химии

Фонды оценочных средств, необходимые для оценки результатов обучения

Оценочные средства для текущего контроля успеваемости и промежуточной аттестации

Практические контрольные задания

1. Хлорид железа(III)

Соберите в вытяжном шкафу прибор, изображенный на рис. 1.

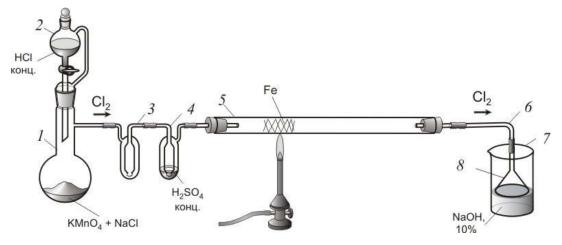


Рис. 1. Прибор для получения хлорида железа(III): 1 – колба Вюрца; 2 – капельная воронка; 3 – предохранительная промывалка; 4 – промывалка с серной кислотой; 5 – реактор; 6 – газоотводная трубка; 7 – стакан химический; 8 – воронка стеклянная.

Тщательно перетрите в фарфоровой ступке (в вытяжном шкафу! Наденьте защитные очки!) смесь 20 г перманганата калия с 15 г хлорида натрия и пересыпьте в колбу Вюрца 1 через воронку для сыпучих веществ. Промывалку 4 заполните концентрированной серной кислотой. (Наденьте защитные очки и перчатки!)

Взвесьте \sim 0,5 г железной проволоки и поместите в реакционную трубку 5 из кварцевого или тугоплавкого стекла. Проволока должна находиться ближе к левой части трубки. Проверьте герметичность собранного прибора.

В химический стакан 7 (рис.1) налейте 50 мл 10%-ного раствора гидроксида натрия для поглощения хлора на выходе из реактора (наденьте защитные очки и перчатки!). Воронка 8 должна слегка касаться поверхности раствора. В капельную воронку 2 налейте концентрированную соляную кислоту.

Медленно приоткройте кран капельной воронки 2 (рис.1) и по каплям добавляйте концентрированную соляную кислоту к перманганату калия в колбу Вюрца 1 (в защитных очках и перчатках!). После заполнения прибора хлором осторожно обогрейте, а затем сильно нагрейте пламенем газовой горелки реакционную трубку 5 с железной проволокой. Установите такой ток хлора, чтобы железо непрерывно "горело", а хлорид железа не уносился из прибора. При сильном разогревании железа уберите горелку. Реакция может идти без внешнего подогрева.

После расходования всего железа охладите реакционную трубку 5 в слабом токе хлора, затем закройте кран капельной воронки 2 (рис.1). Отсоедините реакционную трубку 5 от промывалок и <u>быстро</u> перенесите хлорид железа(III) в предварительно взвешенную сухую пробирку с перетяжкой. (Хлорид железа(III) чрезвычайно гигроскопичен!)

Пробирку с веществом тотчас запаяйте и взвесьте (*наденьте защитные очки*!). Напишите уравнения реакций и рассчитайте выход в процентах относительно взятого количества железа. Небольшое количество хлорида железа, оставшееся на стенках реакционной трубки *5,* растворите в воде и определите рН раствора с помощью универсальной индикаторной бумаги. Напишите уравнения реакций.

2. Дымящая азотная кислота

Азотная кислота является сильным окислителем. Органические вещества при взаимодействии с концентрированной кислотой могут воспламеняться. Пары азотной кислоты раздражающе действуют на дыхательные пути, могут вызвать отек легких. Концентрированная, а тем более дымящая безводная азотная кислота вызывает тяжелые ожоги кожи. Опыты с концентрированной азотной кислотой проводите только в вытяжном шкафу, в перчатках и защитных очках или маске!

Соберите в вытяжном шкафу прибор (рис. 2). В качестве приемника 3 используйте плоскодонную колбу.

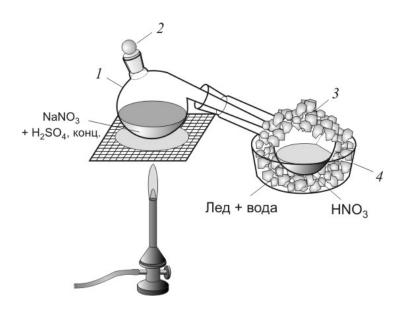


Рис. 2. Прибор для получения дымящей азотной кислоты: 1 – реторта; 2 – пробка; 3 – колба-приемник плоскодонная; 4 – баня со льдом и водой

В реторту 1 поместите 30 г нитрата натрия и прилейте 30 мл 96%-ной серной кислоты (в защитных очках и перчатках!). Закройте тубус реторты стеклянной пришлифованной пробкой 2 или пробкой из асбеста. Колбу-приемник 3 погрузите в баню 4 со льдом и водой. Осторожно нагрейте реторту газовой горелкой через металлокерамическую сетку (в защитных очках и перчатках!). Не перегревайте! При образовании в реторте большого количества пены или появления бурых паров уменьшите пламя горелки. Когда в приемнике 3 соберется 10 – 15 мл азотной кислоты, уберите горелку.

Проделайте следующие опыты с дымящей азотной кислотой (в вытяжном шкафу, защитных очках и перчатках!).

1. Закрепите вертикально в лапке штатива пробирку над баней с песком (рис. 3) и налейте в нее 1 – 2 мл дымящей азотной кислоты. Слегка подогрейте кислоту газовой горелкой (в защитных очках и перчатках!) и опустите в нее тлеющую лучинку.

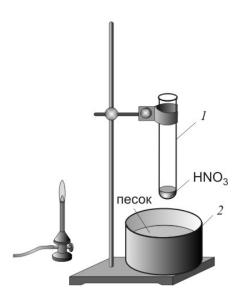


Рис. 3. Изучение свойств дымящей азотной кислоты

- 2. Закрепите вертикально в лапке штатива над баней с песком другую пробирку и налейте в нее 1 2 мл дымящей азотной кислоты. Опустите в пробирку кусочек серы и нагрейте кислоту до кипения (в защитных очках и перчатках!). Охладите пробирку и вылейте содержимое в стакан с водой. Докажите присутствие в полученном растворе сульфат-ионов.
- 3. Налейте в пробирку 1 2 мл дымящей азотной кислоты и внесите небольшое количество сульфида меди, смесь слегка подогрейте (в защитных очках и перчатках!).
- 4. Налейте последовательно в две пробирки по 1 2 мл дымящей азотной кислоты и испытайте ее действие на цинк и олово. Напишите уравнения всех реакций и объясните наблюдаемые явления.

3. Ацетат свинца(II) (свинцовый сахар)

Растворите 3 г основного карбоната свинца(II) в 10 мл горячего 50%-ного раствора уксусной кислоты (рис.4) (в вытяжном шкафу, защитных очках и перчатках!).

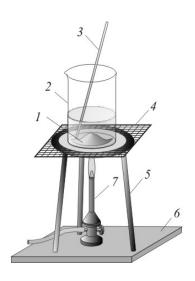


Рис. 4. Получение ацетата свинца(II): 1 – растворяемое вещество, 2 – стакан, 3 – стеклянная палочка, 4 – металлокерамическая сетка, 5 – треножник, 6 – термостойкая подставка, 7 – горелка

Раствор профильтруйте через бумажный фильтр (в вытяжном шкафу, защитных очках и перчатках!), к фильтрату добавьте 1 мл уксусной кислоты той же концентрации.

Полученный раствор выпарьте на водяной бане (в вытяжном шкафу!) до половины первоначального объема и оставьте кристаллизоваться. Кристаллы отделите от раствора на стеклянном пористом фильтре (в защитных очках или маске!) и промойте небольшими порциями спирта по 3 – 5 мл, а затем эфиром. Вещество взвесьте. Напишите уравнение реакции и рассчитайте выход в процентах. Небольшую часть кристаллов нагрейте в сухой пробирке сначала осторожно, а затем сильнее. Смочите раствором ацетата свинца полоску фильтровальной бумаги, положите ее на стекло и дайте просохнуть на воздухе. Высушенную полоску бумаги внесите в пламя горелки. Напишите уравнения реакций и объясните наблюдаемые явления.

4. Сульфат тетраамминмеди(II)

Растворите 0,5 г мелкорастертого пентагидрата сульфата меди(II) в 12,5 мл 15%-ного раствора аммиака. Если раствор получился мутным, то профильтруйте его через бумажный фильтр.

К фильтрату добавьте 7,5 мл этанола и оставьте на некоторое время в вытяжном шкафу. Выпавшие кристаллы отфильтруйте на воронке со стеклянным фильтрующим дном и промойте вначале смесью (1:1) этанола и концентрированного раствора аммиака, а затем, последовательно, этанолом и диэтиловым эфиром.

Полученное вещество перенесите в бюкс и взвесьте. Напишите уравнение реакции и рассчитайте выход в процентах. Рассмотрите кристаллы сульфата тетраамминмеди(II) под микроскопом.

5. Оксид сурьмы(V)

Обработайте в фарфоровой чашке 0,2 – 0,3 г тонкоизмельченной сурьмы 2 – 3 мл концентрированной азотной кислоты при нагревании на водяной бане (рис.5) (в вытяжном шкафу, защитных очках и перчатках!).

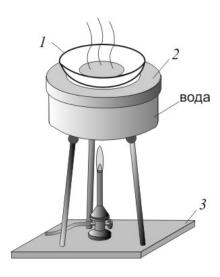


Рис. 5. Получение оксида сурьмы(V): 1 – чашка фарфоровая; 2 – баня водяная; 3 – подставка термостойкая

По окончании окисления реакционную смесь разбавьте водой и отделите осадок от раствора путем декантации. Осадок в чашке высушите при нагревании на водяной бане, затем перенесите в фарфоровый тигель и дегидратируйте в тигельной или шахтной печи при 275°C в течение 30 мин.

Взвесьте полученное вещество. Напишите уравнения реакций и рассчитайте выход в процентах.

Подействуйте на полученный оксид сурьмы(V) в пробирках концентрированной соляной кислотой и гидроксидом натрия. Напишите уравнения реакций и объясните наблюдаемые явления.

6. Хлориды серы

Соберите в вытяжном шкафу прибор, изображенный на рис. 6.

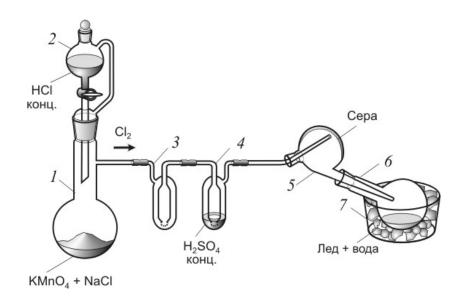


Рис. 6. Прибор для получения хлоридов серы: 1 – колба Вюрца; 2 – капельная воронка; 3 – предохранительная промывалка; 4 – промывалка с серной кислотой; 5 – реторта; 6 – колба-приемник; 7 – баня со льдом и водой

В колбу Вюрца 1 поместите смесь 10 г перманганата калия с 7 г хлорида натрия, тщательно растертую в фарфоровой ступке (в вытяжном шкафу, защитных очках и перчатках!). Промывалку 4 заполните концентрированной серной кислотой (наденьте защитные очки и перчатки!).

Расплавьте 1 – 2 г серы в реторте 5 и, поворачивая реторту, смочите ее внутренние стенки тонким слоем жидкой серы. Для создания равномерного слоя вращайте реторту до полного затвердевания серы. Присоедините реторту указанным на рис. 1 способом к прибору для получения хлора. Проверьте герметичность собранного прибора. В капельную воронку 2 налейте концентрированную соляную кислоту.

Горло реторты вставьте в небольшую колбу *6*, охлаждаемую в бане со льдом. Пропустите ток хлора через реторту. Для инициирования реакции, при необходимости, слегка обогрейте реторту *5*, не расплавляя серу. Опыт ведите до расходования всей серы с образованием жидкости, собирающейся в колбе *6*.

Проделайте следующие опыты с полученной смесью хлоридов серы (в вытяжном шкафу!).

- 1. Налейте в пробирку воды и добавьте несколько капель хлоридов серы
- 2. В пробирку с 3 4 мл 20%-ного раствора гидроксида натрия и добавьте по каплям хлориды серы.
- 3. Поместите в пробирку небольшое количество серы, затем добавьте 1 2 мл полученных хлоридов серы и взболтайте. Напишите уравнения реакций и объясните наблюдаемые явления.

7. Тетрахлороиодат(III) калия (из иодида калия)

Соберите в вытяжном шкафу прибор, изображенный на рис. 7.

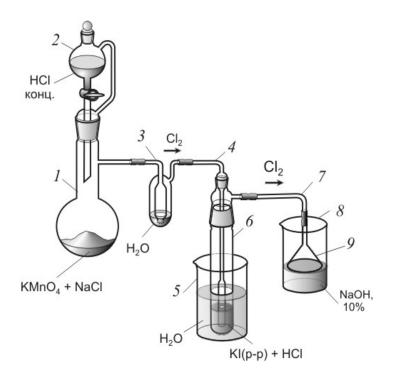


Рис. 7. Прибор для получения дигидрата тетрахлороиодата(III) калия:

1 – колба Вюрца; 2 – капельная воронка; 3 – промывалка с водой;

4 – газоподводящая трубка; 5 – стакан с водой; 6 – реактор

Тщательно перетрите в фарфоровой ступке смесь 15 г перманганата калия с 10 г хлорида натрия (в вытяжном шкафу! Наденьте защитные очки!) и пересыпьте в колбу Вюрца через воронку для сыпучих веществ. Промывалку 3 заполните водой.

Проверьте герметичность собранного прибора. В реактор 6 налейте раствор 3 г иодида калия в 7 мл воды и добавьте 1 – 2 мл концентрированной соляной кислоты. Реактор погрузите в стакан 5 с теплой (30 – 40°С) водой. В капельную воронку 2 налейте концентрированную соляную кислоту (наденьте защитные очки и перчатки!).

Медленно приоткройте кран капельной воронки 2 и добавляйте по каплям концентрированную соляную кислоту к перманганату калия (*Наденьте защитные очки и перчатки*!).

Хлор пропускайте до тех пор, пока весь выпавший первоначально иод не прореагирует с хлором и окраска раствора не станет светложелтой. Для ускорения реакции раствор с осадком иода в реакторе 6 рекомендуется периодически перемешивать длинной стеклянной палочкой, кратковременно приподнимая крышку реактора с газоподводящей трубкой 4, не прекращая пропускать хлор. После растворения всего выпавшего иода реакцию ведите при комнатной температуре. Для этого замените стакан 5 с теплой водой на стакан с водой комнатной температуры.

После завершения взаимодействия и изменения окраски раствора охладите реактор 6 в бане со льдом. Выпавшие кристаллы отделите на стеклянном пористом фильтре (*наденьте защитные очки или маску*!) и высушите на фильтре при включенном водоструйном насосе.

Полученный препарат поместите в бюкс и взвесьте. Напишите уравнения реакций и рассчитайте выход в процентах. Небольшие количества полученного вещества (на кончике шпателя) растворите в пробирках с холодной и горячей водой. Определите рН раствора. Покажите, присутствует ли в растворе свободный иод. Для этого прилейте в пробирки по 2 – 3 мл тетрахлорида углерода.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

	ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)									
Оценка	2	3	4	5						
Результат										
Знания	Отсутствие знаний	Фрагментарные знания	Общие, но не структурированные знания	Сформированные систематиче- ские знания						
Умения	Отсутствие умений	В целом успешное, но не систематическое умение	В целом успешное, но содержащее отдельные пробелы умение (допускает неточности непринципиального характера)	Успешное и систематическое умение						
Навыки (владе- ния)	Отсутствие на- выков	Наличие отдельных на- выков	В целом, сформированные навы- ки, но не в активной форме	Сформированные навыки, при- меняемые при решении задач						

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: правила техники безопасности при работе в химической лаборатории	мероприятия текущего кон-
Знать: требования к оформлению и представлению результатов синтетических работ в области неор-	троля успеваемости, допуск
ганической химии	к задаче
Уметь: пользоваться программными средствами, автоматизирующими обработку данных (управление	мероприятия текущего кон-
базами данных, статистическая обработка, визуализация и т.п.)	троля успеваемости
Уметь: использовать теоретические модели для обоснования строения и реакционной способности не-	
органических соединений	

Уметь: работать с химическими веществами с соблюдением норм техники безопасности	
Уметь: выполнять стандартные операции при синтезе неорганических веществ и материалов	
Уметь: проводить синтез неорганических веществ и материалов по заданной методике	
Уметь: оценить выход целевого продукта при неорганическом синтезе, объяснить возможные причины	
его отличия от теоретически возможного	
Уметь: корректно интерпретировать результаты определения химического и фазового состава веществ	
и материалов различной природы	
Уметь: предложить методы идентификации фазового состава и структуры неорганических веществ	
Уметь: грамотно протоколировать и представлять результаты неорганического синтеза	
Владеть: стандартными инструментальными методами исследования веществ и материалов	мероприятия текущего кон-
Владеть: навыками оформления протоколов неорганического синтеза	троля успеваемости