Федеральное государственное бюджетное образовательное учреждение высшего образования «Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр. РАН, профессор

/С.Н. Калмыков/

«30» августа 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ) Молекулярные теории растворов

Уровень высшего образования:

Магистратура

Направление подготовки (специальность):

04.04.01 Химия

Направленность (профиль) ОПОП:

Физическая химия

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Рабочая программа дисциплины (модуля) разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки 04.04.01 «Химия» (программа магистратуры) в редакции приказа МГУ от 30 августа 2019 г., №1033.

Год (годы) приема на обучение 2019/2020, 2020/2021

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дисциплине (модулю)
СПК-1.М. Способен использовать теоретические основы современных физикохимических методов исследования и анализа систем различной природы при решении практических задач	СПК-1.М.1. При изучении систем различной природы выбирает физико-химические методы исследования, адекватные поставленной задаче СПК-1.М.2 Грамотно интерпре-	Знать: теоретические основы современных методов исследования структуры и свойств растворов Уметь: выбирать направление экспериментального физико-химического исследования свойств растворов неэлектролитов. Уметь: применить теоретические основы современных физико-химических методов при анализе и представлении материала научного сообщения на заданную тему Уметь: оценить возможные источники ошибок при изучении термо-
	тирует результаты физико- химического эксперимента и тео- ретических расчетов	динамических свойств растворов с помощью инструментальных методов физической химии (теплоты смешения, теплоты испарения, методы анализа поверхности и пр.) Владеть: навыками статистической обработки данных физико-химического эксперимента
СПК-3.М. Способен использовать физические и математические модели с учетом их возможностей и ограничений при планировании исследований, обработке и ин-	СПК-3.М.1 Выбирает адекватные подходы и модели при обработке данных физико-химического эксперимента	Знать: возможности и ограничения расчетных методов свойств растворов при решении практических задач Владеть: навыками использования программных средств и работы в компьютерных сетях, использования ресурсов интернета; основными методами, способами и средствами получения, хранения, переработки информации при решении физико-химических задач
терпретации данных в из- бранной области физической химии	СПК-3.М.2. Оценивает возможности и качество программных продуктов для выполнения квантовохимических, термодинамических и кинетических расчетов	Уметь: использовать программные продукты для выполнения стандартных термодинамических, структурных и кинетических расчетов Владеть: навыками использования профессиональных баз данных для получения информации, необходимой для физико-химического моделирования свойств растворов с разной природой межмолекулярных взаимодействий

3. Объем дисциплины (модуля) составляет 2 зачетных единицы, всего 72 часа, из которых 45 часов составляет контактная работа студента с преподавателем (19 часов занятия лекционного типа, 19 часов – занятия семинарского типа, 5 часов – индивидуальные консультации, 2 часа – промежуточный контроль успеваемости), 27 часов составляет самостоятельная работа студента.

4. Входные требования для освоения дисциплины (модуля), предварительные условия. Обучающийся должен

Знать: Курс физической химии

Уметь: Проводить компьютерные расчеты

Владеть: Основами компьютерного моделирования

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	Bcero	В том числе								
жание разделов и тем дисцип- лины (модуля), форма промежуточной аттеста-		Контактная работа (работа во взаимодействии с преподавателем), часы из них					Самостоятельная работа обучающегося, часы из них			
ции по дисциплине (модулю)		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка реферато- вит.п	Всего
Тема 1. Химический потенциал	10	3	4		1		8	8		2
Тема 2. Термодинамика растворов	12	4	3		1		8	6		4
Тема 3. Взаимодействие в растворах	12	4	3		1		8	6		4

Тема 4. Молекулярные модели растворов	14	4	5	1		10	6	4
Тема 5. Молекулярные наноструктуры растворов	13	4	4	1		9	6	4
Промежуточная аттестация <u>зачет</u>	11				2	2		9
Итого	72	19	19	5	2	45	32	27

6. Образовательные технологии:

- -применение компьютерных симуляторов, обраб1отка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Программа курса, план занятий и перечень заданий для самостоятельной работы. По теме каждой лекции указывается материал в источниках из списков основной и вспомогательной литературы, а также из интернет-ресурсов.

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Со всех компьютеров МГУ организован доступ к полным текстам научных журналов и книг на русском и иностранных языках. Доступ открыт по IP-адресам, логин и пароль не требуются: http://nbmgu.ru/

Основная литература

- 1. Курс физической химии под ред. Я.И.Герасимова. Т. 1. Госхимиздат. 1963.
- 2. О.М. Полторак. Лекции по химической термодинамике. Высшая школа. М. 1971.
- 3. О.М.Полторак. Термодинамика в физической химии. Высшая школа. М. 1991.
- 4. П. Эткинс, Дж. Де Паула. Физическая химия. 1. Равновесная термодиномика. М. «Мир». 2007г.
- 5. Н.А. Смирнова. Молекулярные теории растворов. Химия. Л. 1987.

6. А.М.Толмачев Методические разработки к курсу физической химии: I, II http://www.chem.msu.su/rus/teaching/tolmachev/tolmachev.pdf

Дополнительная литература

- 1. Э.А.Мелвин-Хьюз. Физическая химия. Т.2. ИЛ. М. 1962. С. 676-734.
- 2. А.А.Лопаткин, Л.Н.Сидоров. Статистическая термодинамика в вопросах и ответах. М. 1986.
- 3. Е.М.Кузнецова, Е.П. Агеев. Термодинамика в вопросах и ответах. М. 1997.
- 4. Г.Ф.Воронин. Основы термодинамики. М. 1987.

Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (фломастерами)

- 9. Язык преподавания русский
- 10. Преподаватели:

Профессор, д.х.н., Толмачев Алексей Михайлович, кафедра физической химии химического факультета МГУ, amtolmach@phys.chem.msu.ru, 8-495-9395243

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - зачета. На зачете проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Вопросы для зачета:

- 1. Химический потенциал компонентов растворов.
- 2. Термодинамические функции растворов.
- 3. Взаимодействие в растворах
- 4. Экспериментальное определение и теоретическое описание коэффициентов активности компонентов растворов.
- 5. Молекулярно статистические модели растворов.
- 6. Молекулярно динамические расчеты ассоциации в растворах спиртов.

Методические материалы для проведения процедур оценивания результатов обучения

Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)						
Оценка	2	3	4	5		
Результат						
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематиче-		
	знаний		знания	ские знания		
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-		
	умений	систематическое умение	отдельные пробелы умение (до-	ние		
			пускает неточности непринципи-			
			ального характера)			
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-		
ния)	выков	ков	но не в активной форме	няемые при решении задач		

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: теоретические основы современных методов исследования структуры и свойств раство-	мероприятия текущего контроля ус-
ров	певаемости, устный опрос на зачете
Знать: возможности и ограничения расчетных методов свойств растворов при решении практи-	
ческих задач	
Уметь: выбирать направление экспериментального физико-химического исследования свойств	мероприятия текущего контроля ус-
растворов неэлектролитов.	певаемости, устный опрос на зачете
Уметь: применить теоретические основы современных физико-химических методов при анализе	
и представлении материала научного сообщения на заданную тему	
Уметь: оценить возможные источники ошибок при изучении термодинамических свойств рас-	
творов с помощью инструментальных методов физической химии (теплоты смешения, теплоты	
испарения, методы анализа поверхности и пр.)	
Уметь: использовать программные продукты для выполнения стандартных термодинамических,	
структурных и кинетических расчетов	
Владеть: навыками статистической обработки данных физико-химического эксперимента	мероприятия текущего контроля ус-
Владеть: навыками использования программных средств и работы в компьютерных сетях, ис-	певаемости, устный опрос на зачете
пользования ресурсов интернета; основными методами, способами и средствами получения, хра-	
нения, переработки информации при решении физико-химических задач	

Владеть: навыками использования профессиональных баз данных для получения информации,	
необходимой для физико-химического моделирования свойств растворов с разной природой	
межмолекулярных взаимодействий	