Федеральное государственное бюджетное образовательное учреждение высшего образования

«Московский государственный университет имени М.В. Ломоносова» Химический факультет

УТВЕРЖДАЮ

И.о. декана химического факультета, Чл.-корр.. РАН, профессор

/С.Н. Калмыков/

«20» мая 2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Физическая химия ферментов

Уровень высшего образования:

Специалитет

Направление подготовки (специальность):

04.05.01 Фундаментальная и прикладная химия

Направленность (профиль) ОПОП:

Фундаментальная и прикладная энзимология

Форма обучения:

очная

Рабочая программа рассмотрена и одобрена Учебно-методической комиссией факультета (протокол №3 от 13.05.2019)

Москва 2019

Рабочая программа дисциплины разработана в соответствии с самостоятельно установленным МГУ образовательным стандартом (ОС МГУ) для реализуемых основных профессиональных образовательных программ высшего образования по направлению подготовки / специальности 04.05.01 «Фундаментальная и прикладная химия» (программа специалитета), утвержденного приказом МГУ от 29 декабря 2018 года № 1770 (с изменениями по приказу № 1109 от 11.09.2019).

Год (годы) приема на обучение 2019/2020

- 1. Место дисциплины (модуля) в структуре ООП: вариативная часть ООП, блок ПД.
- 2. Планируемые результаты обучения по дисциплине, соотнесенные с планируемыми результатами освоения образовательной программы (компетенциями выпускников). Соответствие результатов обучения по данному элементу ОПОП результатам освоения ОПОП (в форме компетенция индикатор ЗУВ) указано в Общей характеристике ОПОП.

Компетенция	Индикатор достижения	Планируемые результаты обучения по дис- циплине (модулю)
ОПК-1.С. Способен решать современные проблемы фундаментальной и прикладной химии, используя методологию научного подхода и систему фундаментальных химических понятий и законов	ОПК-1.С.1. Воспринимает информацию химического содержания, систематизирует и анализирует ее, оценивает актуальность и степень новизны данных	Уметь анализировать научную литературу с целью выбора направления и методов, применяемых в исследовании по теме выпускной квалификационной работы, Уметь: самостоятельно составлять план исследования Владеть навыками поиска, критического анализа, обобщения и систематизации научной информации, постановки целей исследования и выбора оптимальных путей и методов их достижения
СПК-1.С. Способен использовать сведения о строении и биологических функциях основных классов биоорганических соединений, свойствах микроорганизмов, способах регуляции биохимических процессов, основных направлениях современной биотехнологии и прикладной биохимии при решении задач профессиональной деятельности	СПК-1.С(итог) использует сведения о строении и биологических функциях основных классов биоорганических соединений, свойствах микроорганизмов, способах регуляции биохимических процессов, основных направлениях современной биотехнологии и прикладной биохимии при планировании и выполнении исследований, интерпретации полученных результатов	Знать: строение и биологические функции основных классов биоорганических соединений, свойства микроорганизмов, способы регуляции биохимических процессов, основные направлениях современной биотехнологии и прикладной биохимии Уметь: самостоятельно применять знания о строении и биологических функциях основных классов биоорганических соединений, свойствах микроорганизмов, способах регуляции биохимических процессов, основных направлениях современной биотехнологии и прикладной биохимии с целью решения профессиональных задач

СПК-2.С.1 Предлагает различные кинетические схемы ферментативных реакций, проводит их параметризацию

Знать: основные механизмы действия ферментов разных классов Уметь: анализировать экспериментальные данные и делать выводы о физико-химических закономерностях действия ферментов

3. Объем дисциплины в зачетных единицах с указанием количества академических или астрономических часов, выделенных на контактную работу обучающихся с преподавателем (по видам учебных занятий) и на самостоятельную работу обучающихся:

Объем дисциплины (модуля) составляет 4 зачетных единицы, всего 144 часа, из которых 90 часов составляет контактная работа студента с преподавателем (42 часа занятия лекционного типа, 42 часа – занятия семинарского типа, 2 часа - групповые консультации, 4 часа – промежуточный контроль успеваемости), 54 часа составляет самостоятельная работа студента.

4. Входные требования для освоения дисциплины (модуля), предварительные условия. Обучающийся должен

Знать: общие положения, законы и теории базовых химических и математических дисциплин, основы биохимии, основные классы биоорганических соединений, основы химической и ферментативной кинетики.

Уметь: применять сведения в области физической химии к решению упрощенных задач, решать дифференциальные уравнения в рамках курса математического анализа для студентов химического факультета.

Владеть: навыками анализа физико-химических параметров системы для предсказания возможных протекающих процессов, методами анализа экспериментальных данных.

5. Содержание дисциплины (модуля), структурированное по темам.

Наименование и краткое содер-	Bcero	В том числе	
жание разделов и тем дисцип- лины (модуля),	(часы)	Контактная работа (работа во взаимодействии с преподавателем), часы	Самостоятельная рабо- та обучающегося, часы
форма промежуточной аттеста-		из них	из них

		Занятия лекционного типа	Занятия семинарского типа	Групповые консульта- ции	Индивидуальные кон- сультации	Учебные занятия, направленные на проведение текущего контроля успеваемости, промежуточной аттестации	Bcero	Выполнение домашних заданий	Подготовка рефератов и т.п	Bcero
Тема 1.	8	2	2	2			6	2		2
Тема 2.	8	3	3				6	2		2
Тема 3.	6	2	2				4	2		2
Тема 4.	6	2	2				4	2		2
Тема 5.	6	2	2				4	2		2
Тема 6.	8	3	3				6	2		2
Тема 7.	8	3	3				6	2		2
Тема 8.	6	2	2				4	2		2
Тема 9.	8	3	3				6	2		2
Тема 10.	8	3	3				6	2		2
Тема 11.	8	3	3				6	2		2
Тема 12.	6	3	3				6			

Тема 13.	4	2	2			4		
Тема 14.	4	2	2			4		
Тема 15.	4	2	2			4		
Тема 16.	4	2	2			4		
Тема 17.	6	3	3			6		
Промежуточная аттестация <u>экза-</u> <u>мен</u>	36				4	4		32
Итого	144	42	42	2	4	90		54

Тема 1 Классы ферментов. Основные функциональные группы активных центров ферментов. Связывание субстрата в активном центре фермента. Основные группы активного центра, участвующие в связывании. Кофакторы, коферменты и простетические группы ферментов. Роль ионов металлов в катализе.

Тема 2 Гидролазы. Особенности строения активных центров, сходные черты и различия в катализе α-химотрипсином, трипсином, эластазой.

Тема 3 Клеточная стенка бактерий и гликозидазы. Лизоцим, группы активного центра, особенности механизма действия.

Тема 4 Кислые протеазы на примере пепсина: особенности строения активного центра и механизма действия.

Тема 5 Тиоловые протеазы на примере папаина: особенности строения активного центра и механизма действия.

Тема 6 Особенности строения активного центра карбоксипептидазы А,

альтернативные механизмы действия фермента.

Тема 7 Рибонуклеаза: основные группы активного центра, типы катализа.

Гем-содержащие белки и ферменты. Особенности строения. Основные окислительные состояния железа гема. Гемоглобин и миоглобин, особенности строения и функции.

Тема 8 Пероксидазы: особенности структуры, механизм расщепления пероксида водорода в активном центре.

Ионы металлов в катализе. Карбоангидраза: особенности строения , активного центра (рН-зависимость и рК групп, участвующих в катализе), механизм действия.

Тема 9 Пероксидазы: особенности структуры, механизм расщепления пероксида водорода в активном центре.

Ионы металлов в катализе. Карбоангидраза: особенности строения, активного центра (рН-зависимость и рК групп, участвующих в катализе), механизм действия.

Тема 10 NAD+-зависимые ферменты, особенности строения кофермента, перенос гидрид-иона. Пример катализируемой ферментом реакции с участием NAD+' (NADH). Структура активного центра и механизм действия алкогольдегидрогеназы. Особенности взаимодействия с субстратом и механизм действия лактатдегидрогеназы.

Тема 11 Флавопротеины. Тиаминпирофосфат: особенности строения, участие в катализе на примере пируватдекарбоксилазы. Пиридоксальфосфат: особенности строения, участие в катализе на примере рацемазы аминокислот.

Тема 12 Белки как биокатализаторы. Типы гомогенного катализа: сближение и ориентация, кислотно-основной, электрофильный и нуклеофильный. Сравнение ферментов с органическими катализаторами гомогенного типа (эффективность действия, специфичность и стереоспецифичность, регуляторные свойства ферментов). Аминокислоты, их кислотно-основные свойства, полярность, гидрофобность и гидрофильность (параметр Ганша).

Тема 13 Механизм сорбции молекул и ионов на активном центре. Водородная связь, электростатические взаимодействия, гидрофобные взаимодействия, комплексы с переносом заряда и оценка их вклада в сорбцию субстрата на ферменте. Коиформационные изменения в структуре белка и лиганда, сопровождающие сорбцию. Оценка свободной энергии сорбции (экстракционная иэкстракционно-конформационная модели).

Тема 14 Свободная энергия сорбции субстрата на ферменте как источник ускорения химической реакции. Профили "свободная энергия - координата рсацни". Оценка масштабов исличипысвободной энергии сближения реагентов. Сравнение, скорости и свободной энергии ферментативной и неферментативной реакции, модель "ключ-замок". Специфическое, продуктивное и непродуктивное связывание субстрата и фермента. Механизм сближения и ориентации в ферментативном катализе. Теории напряжения (или деформации) и индуцированного соответствия (Коштланд).

Тема 15 Химические механизмы ферментативных реакций. Стабилизация переходного состояния общим кислотно-основным катализом. Примеры кислотно-основного катализа различными функциональными группами в белках (карбоксильная группа, аминогруппа, амидная группа, имидазол, гидроксильная группа), механизмы эстафетной передачи заряда и "push-pall". Промежуточные ковалентные соединения в ферментативном катализе. Эффекты микросреды активного центра. Влияние растворителя на реакции нуклеофильного замещения, внутренняя реакционная способность функциональных групп в белках.

Тема 16 Роль ионов металлов в ферментативном катализе. Взаимосвязь координационного .числа и геометрии комплекса, примеры комплексов металлов с различной геометрией в биологаческихсистемах. Устойчивость комплексов, влияние на нее заряда и размера иона, "жесткости" и "мягкости" центрального атома и лиганда, основности лиганда, хелатного и макроциклического эффектов. Комплексообразование ионов металлов с белками. Механизмы взаимодействия фермента, иона металла и лиганда. Химические механизмы участия ионов металлов в фрментативномкатализе. Окислительно-восстановительные реакции с участием ионов металлов и их роль в биологических процессах.

Тема 17 Коферменты. Окислительно-восстановительные коферменты: NAD, FAD, кобаламины и кобаламиды (витамин В]), аскорбиновая кислота, ферридоксин (структура и механизм действия).Коферменты, не обладающие окислительно-восстановительными свойствами: тиаминпирофосфат, пиридоксальфосфат, тетрагидрофолиевая кислота, биотип, кофермент А (структура и механизм действия).

6. Образовательные технологии:

- -применение компьютерных симуляторов, обработка данных на компьютерах, использование компьютерных программ, управляющих приборами;
- -использование средств дистанционного сопровождения учебного процесса;
- -преподавание дисциплин в форме авторских курсов по программам, составленным на основе результатов исследований научных школ МГУ.

7. Учебно-методические материалы для самостоятельной работы по дисциплине (модулю):

Литература из списка основной и дополнительной литературы по курсу, материалы научных статей, предоставляемые на лекциях.

8. Ресурсное обеспечение:

• Перечень основной и вспомогательной учебной литературы ко всему курсу

Основная литература

- 1. Березин И.В., Мартинек К. "Основы физической химии ферментативного катализа",
- 2. Фершт Э. "Структура и механизм действия ферментов", М., Мир, 1980.
- 3. Корниш-Боуден Э. "Основы ферментативной кинетики" М., Мир, 1979.
- 4. Березин И.В., Клесов А.А., Практический курс химической и ферментативной кинетики

Дополнительная литература

- 1.М.Бендер, Р.Бергерон, М.Комияма. Биоорганическая химия ферментативного катализа. М., Мир, 1987.
- 2. Mechanistic bioinorganic chemistry & quot;, ed. H.H. Thorp and V.L. Pecoraro, ACS, 1995
- З.У.П.Дженкс. Катализ в химии и энзимологии. М., Мир, 1972.
- 4. M. I. Page, A. Williams, eds. Enzyme mechanisms. Cambridge. Royal. Soc.Chem. 1993.
- 5. H. B. Dunford. Horseradish peroxidase: structure and kinetic properties. 1999.
- 6. I. Bertini, H. B. Gray, S. J. Lippard, J. S. Valentine, eds. Biinorganic chemistry. California. Univ. Sci. Books, Mill Willey. 1994.
- Материально-техническое обеспечение: специальных требований нет, занятия проводятся в обычной аудитории, оснащенной доской и мелом (маркерами), техникой для презентаций

9. Язык преподавания - русский

10. Преподаватели: проф. д.х.н. Клячко Н.Л. nlklyachko@gmail.com, доц. к.х.н. Казанков Г.М. gkazankov@gmail.com

Фонды оценочных средств, необходимые для оценки результатов обучения

Образцы оценочных средств для текущего контроля усвоения материала и промежуточной аттестации - экзамена. На экзамене проверяется достижение промежуточных индикаторов компетенций, перечисленных в п.2.

Вопросы к экзамену:

К разделу Механизмы действия ферментов

- 1. Классы ферментов. Номер фермента. Примеры катализируемых ферментами реакций.
- 2. Основные функциональные группы активных центров ферментов. Примеры.
- 3. Связывание субстрата в активном центре фермента. Основные группы активного центра, участвующие в связывании. Основные типы и примеры взаимодействий фермента и субстрата.
- 4. Кофакторы, коферменты и простетические группы ферментов. Примеры.
- 5. Роль ионов металлов в катализе. Примеры.
- 6. Гидролазы. Особенности структуры активного центра и механизм действия а-химотрипсина.
- 7. Гидролазы. Особенности строения активных центров, сходные черты и различия в катализе α-химотрипсином, трипсином, эластазой.
- 8. αХимотрипсин. Особенности взаимодействий в фермент-субстратном комплексе и переходном состоянии.
- 9. Клеточная стенка бактерий и гликозидазы. Лизоцим, группы активного центра, особенности механизма действия.
- 10. Кислые протеазына примере пепсина: особенности строения активного центра и механизма действия.
- 11. Тиоловые протеазы на примере папаина: особенности строения активного центра и механизма действия.
- 12. Особенности строения активного центра карбоксипептидазы А, альтернативные механизмы действия фермента.
- 13. Рибонуклеаза: основные группы активного центра, типы катализа.
- 14. Специфичность ферментов: групповая, абсолютная, стереоспецифичность. Примеры.
- 15. Гем-содержащие белки и ферменты. Особенности строения. Основные окислительные состояния железа гема.
- 16. Гем-содержащие белки и ферменты. Гемоглобин и миоглобин, особенности строения и функции.
- 17. Гем-содержащие ферменты на примере пероксидаз: особенности структуры, механизм расщепления пероксида водорода в активном центре.
- 18. Ионы металлов в катализе. Карбоангидраза: особенности строения, активного центра (рН-зависимость и рК групп, участвующих в катализе), механизм действия.
- 19. NAD+-зависимые ферменты, особенности строения кофермента, перенос гидрид-иона. Пример катализируемой ферментом реакции с участием NAD+' (NADH).
- 20. Структура активного центра и механизм действия алкогольдегидрогеназы.
- 21. Особенности взаимодействия с субстратом и механизм действия лактатдегидрогеназы.

- 22. Флавопротеины. Особенности строения FMN и FAD, участие в катализе глутатионредуктазой.
- 23. Тиаминпирофосфат: особенности строения, участие в катализе на примере пируватдекарбоксилазы.
- 24. Пиридоксальфосфат: особенности строения, участие в катализе на примере рацемазы аминокислот.
- 25. Пиридоксальфосфат: особенности строения, образование и роль основания Шиффа (На примере реакции, катализируемой аминотрансферазой).

По разделу Физико-химические аспекты ферментативного катализа

Белки как биокатализаторы. Типы гомогенного катализа: сближение и ориентация, кислотно-основной, электрофильный и нуклеофильный. Сравнение ферментов с органическими катализаторами гомогенного типа (эффективность действия, специфичность и стереоспецифичность, регуляторные свойства ферментов). Аминокислоты, их кислотно-основные свойства, полярность, гидрофобность и гидрофильность (параметр Ганша).

Механизм сорбции молекул и ионов на активном центре. Водородная связь, электростатические взаимодействия, гидрофобные взаимодействия, комплексы с переносом заряда и оценка их вклада в сорбцию субстрата на ферменте. Конформационные изменения в структуре белка и лиганда, сопровождающие сорбцию. Оценка свободной энергии сорбции (экстракционная иэкстракционно-конформационная модели).

Свободная энергия сорбции субстрата на ферменте как источник ускорения химической реакции. Профили "свободная энергия - координата рсацни". Оценка масштабов свободной энергии сближения реагентов. Сравнение, скорости и свободной энергии ферментативной и неферментативной реакции, модель "ключ-замок". Специфическое, продуктивное и непродуктивное связывание субстрата и фермента. Механизм сближения и ориентации в ферментативном катализе. Теории напряжения (или деформации) и индуцированного соответствия (Коштланд).

Химические механизмы ферментативных реакций. Стабилизация переходного состояния общим кислотно-основным катализом. Примеры кислотно-основного катализа различными функциональными группами в белках (карбоксильная группа, аминогруппа, амидная группа, имидазол, гидроксильная группа), механизмы эстафетной передачи заряда и "push-pall". Промежуточные ковалентные соединения в ферментативном катализе. Эффекты микросреды активного центра. Влияние растворителя на реакции нуклеофильного замещения, внутренняя реакционная способность функциональных групп в белках.

Роль ионов металлов в ферментативном катализе. Взаимосвязь координационного .числа и геометрии комплекса, примеры комплексов металлов с различной геометрией в биологаческихсистемах. Устойчивость комплексов, влияние на нее заряда и размера иона, "жесткости" и "мягкости" центрального атома и лиганда, основности лиганда, хелатного и макроциклического эффектов. Комплексообразование ионов металлов с белками. Механизмы взаимодействия фермента, иона металла и лиганда. Химические механизмы участия ионов металлов в фрментативномкатализе. Окислительно-восстановительные реакции с участием ионов металлов и их роль в биологических процессах.

Коферменты. Окислительно-восстановительные коферменты: NAD, FAD, кобаламины и кобаламиды (витамин В]), аскорбиновая кислота, ферридоксин (структура и механизм действия).Коферменты, не обладающие окислительно-восстановительными свойствами: тиаминпирофосфат, пиридоксальфосфат, тетрагидрофолиевая кислота, биотип, кофермент А (структура и механизм действия).

Методические материалы для проведения процедур оценивания результатов обучения Шкала оценивания знаний, умений и навыков является единой для всех дисциплин (приведена в таблице ниже)

ШКАЛА И КРИТЕРИИ ОЦЕНИВАНИЯ РЕЗУЛЬТАТА ОБУЧЕНИЯ по дисциплине (модулю)								
Оценка	2	3	4	5				
Результат								
Знания	Отсутствие	Фрагментарные знания	Общие, но не структурированные	Сформированные систематиче-				
	знаний		знания	ские знания				
Умения	Отсутствие	В целом успешное, но не	В целом успешное, но содержащее	Успешное и систематическое уме-				
	умений	систематическое умение	отдельные пробелы умение (до-	ние				
			пускает неточности непринципи-					
			ального характера)					
Навыки (владе-	Отсутствие на-	Наличие отдельных навы-	В целом, сформированные навыки,	Сформированные навыки, приме-				
ния)	выков	ков	но не в активной форме	няемые при решении задач				

РЕЗУЛЬТАТ ОБУЧЕНИЯ	ФОРМА ОЦЕНИВАНИЯ
по дисциплине (модулю)	
Знать: строение и биологические функции основных классов биоорганических соединений, свой-	мероприятия текущего контроля ус-
ства микроорганизмов, способы регуляции биохимических процессов, основные направлениях	певаемости, устный опрос на экзаме-
современной биотехнологии и прикладной биохимии	не
Знать: основные механизмы действия ферментов разных классов	
Уметь анализировать научную литературу с целью выбора направления и методов, применяе-	мероприятия текущего контроля ус-
мых в исследовании по теме выпускной квалификационной работы,	певаемости, устный опрос на экзаме-
Уметь: самостоятельно составлять план исследования	не
Уметь: самостоятельно применять знания о строении и биологических функциях основных клас-	
сов биоорганических соединений, свойствах микроорганизмов, способах регуляции биохимиче-	
ских процессов, основных направлениях современной биотехнологии и прикладной биохимии с	
целью решения профессиональных задач	
Уметь: анализировать экспериментальные данные и делать выводы о физико-химических зако-	
номерностях действия ферментов	
Владеть навыками поиска, критического анализа, обобщения и систематизации научной инфор-	мероприятия текущего контроля ус-
мации, постановки целей исследования и выбора оптимальных путей и методов их достижения	певаемости, устный опрос на экзаме-

не	
----	--