НАУЧНАЯ СТАТЬЯ

УДК 546.57, 544.77

НАНОЧАСТИЦЫ СЕРЕБРА: ЗЕЛЕНЫЙ СИНТЕЗ С ИСПОЛЬЗОВАНИЕМ ЭКСТРАКТОВ ЛЕКАРСТВЕННЫХ РАСТЕНИЙ И АНТИБАКТЕРИАЛЬНАЯ АКТИВНОСТЬ

А.С. Рыжкова¹, А.А. Макеева², О.И. Верная^{1, 2}, А.В. Шабатин³, А.М. Семенов^{2, 4}, А. Бозе⁵, Т.И. Шабатина^{1, 2}

1 Московский государственный технический университет им. Н.Э. Баумана

3 Институт физической химии и электрохимии им. А.Н. Фрумкина РАН

Автор, ответственный за переписку: Ольга Ивановна Верная, vernayaoi@my.msu.ru

Аннотация. В настоящей работе синтез наночастиц серебра проведен с использованием водных экстрактов цветков *Matricaria chamomilla* и *Calendula officinalis*. Состав прекурсоров, размер и морфология частиц серебра установлены методами ИК- и УФ-спектроскопии, динамического светорассеяния, просвечивающей электронной микроскопии. Полученные растворы наночастиц серебра активны в отношении *E. coli* и *S. aureus*.

Ключевые слова: наночастицы, серебро, зеленый синтез, экстракт календулы, экстракт ромашки, антибактериальная активность

DOI: 10.55959/MSU0579-9384-2-2025-66-6-469-480

Благодарности. Микроскопические исследования получаемых образцов проведены на оборудовании ЦКП химического факультета МГУ имени М.В. Ломоносова и ЦКП ИХФЭ имени А.Н. Фрумкина РАН в рамках программ развития Министерства науки и образования РФ.

Финансирование. Зеленый синтез и характеризация предшественников и наночастиц методами ИК-, УФ-спектроскопии выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект 25-43-01023). Микроскопические исследования и определение размера частиц методом динамического светорассеяния проведены в соответствии с государственным заданием № АААА-А21-121011590090-7 МГУ имени М.В. Ломоносова.

Для цитирования: Рыжкова А.С., Макеева А.А., Верная О.И., Семенов А.М., Бозе А., Шабатина Т.И. Наночастицы серебра: зеленый синтез с использованием экстрактов лекарственных растений и антибактериальная активность // Вестн. Моск. ун-та. Сер. 2. Химия. 2025. Т. 66. № 6. С. 469–480.

² Московский государственный университет имени М.В. Ломоносова, химический факультет

⁴ Московский государственный университет имени М.В. Ломоносова, биологический факультет

⁵ Факультет фармацевтических наук (SPS) в составе Шикша-О-Анусандхан (SOA) – частного университета в Бхубанешваре, штат Одиша, Индия

[©] Рыжкова А.С., Макеева А.А., Верная О.И., Семенов А.М., Бозе А., Шабатина Т.И., 2025

ORIGINAL ARTICLE

SILVER NANOPARTICLES: GREEN SYNTHESIS USING MEDICINAL PLANT EXTRACTS AND ANTIBACTERIAL ACTIVITY

A.S. Ryzhkova¹, A.A. Makeeva², O.I. Vernaya^{1, 2}, A.V. Shabatin³, A.M. Semenov^{2, 4}, A. Bose⁵, T.I. Shabatina^{1, 2}

¹ Bauman Moscow State Technical University, faculty of fundamental sciences

²Lomonosov Moscow State University, Department of Chemistry

⁴ Lomonosov Moscow State University, Department of Biology

Corresponding author: Olga I. Vernaya, vernayaoi@my.msu.ru

Abstract. Green synthesis and characterization of precursors and nanoparticles by IR, UV spectroscopy methods were carried out with the financial support of the Russian Foundation for Basic Research (project 25-43-01023). Microscopic studies and determination of particle size by dynamic light scattering were carried out in accordance with state assignment N. AAAA-A21-121011590090-7 of M.V. Lomonosov Moscow State University.

Keywords: nanoparticles, silver, green synthesis, *Matricaria chamomilla*, *Calendula officinalis*, antibacterial activity

Acknowledgements. Microscopic studies of the obtained samples were carried out on the equipment of the Central Research Laboratory of the Faculty of Chemistry of Lomonosov Moscow State University and the Central Research Laboratory of the A.N. Frumkin Institute of Physics and Technology of the Russian Academy of Sciences as part of the development programs of the Ministry of Science and Education of the Russian Federation.

Financial Support. Green synthesis and characterization of precursors and nanoparticles by IR, UV spectroscopy methods were carried out with the financial support of the Russian Foundation for Basic Research (project 25-43-01023). Microscopic studies and determination of particle size by dynamic light scattering were carried out in accordance with state assignment N. AAAA-A21-121011590090-7 of M.V. Lomonosov Moscow State University.

For citation: Ryzhkova A.S., Makeeva A.A., Vernaya O.I., Shabatin A.V., Semenov A.M., Bose A., Shabatina T.I. Silver Nanoparticles: Green Synthesis using Medicinal Plant Extracts and Antibacterial Activity // Vestn. Mosk. un-ta. Ser. 2. Khimiya. 2025. T. 66. № 6. S. 469–480.

Введение

Синтез наночастиц металлов с использованием подходов зеленого синтеза получил широкое распространение в последние годы в связи с их экологичностью и низкой стоимостью, высокой производительностью и биосовместимостью конечного продукта. Известно, что наночастицы серебра благодаря уникальным физико-химическим и антибактериальным свойствам находят обширное применение в различных областях науки и техники, в том числе медицине, пищевой промышленности и сельском хозяйстве. Ранняя

диагностика заболеваний, таких как рак, ВИЧ, а также бактериальные и вирусные инфекции, повышает эффективность их лечения. Для диагностики используют зонды, которые связывают с наночастицами серебра. Взаимодействие такого биосенсора с анализируемым веществом приводит к сдвигу частоты плазмонного поглощения частиц серебра вследствие изменения локальной диэлектрической проницаемости и показателя преломления среды. Также при создании биосенсоров используют присущую наночастицам

³ Frumkin Institute of Physical Chemistry and Electrochemistry of the Russian Academy of Sciences

⁵ Department of Pharmaceutical Analysis, School of Pharmaceutical Sciences Siksha O Anusandhan (Deemed to be University)

серебра способность усиливать рамановское рассеяние и фотолюминесценцию анализируемых молекул в пространственной близости от их поверхности [1-4]. Кроме того, есть исследования, рассматривающие связь каталитических свойств нанокластеров серебра и пиков в спектрах диэлектрических потерь [5]. Медицина не единственная область, где могут быть использованы биосенсоры на основе наночастиц серебра. Они находят применение для выявления опасных соединений (тяжелых металлов, пестицидов, токсичных соединений) в пище, воде, воздухе, почве [6, 7]. На основе наночастиц серебра создают чернила для печати проводящих участков на подложках [6]. Эти частицы включают в состав солнечных батарей, так как они способны усиливать поглощение в пластинчатых и тонкопленочных кремниевых солнечных элементах [8, 9].

Наночастицы серебра активны в отношении широкого спектра грамположительных и грамотрицательных патогенных микроорганизмов, в том числе резистентных к антибактериальным препаратам [10]. Сочетание их с антибактериальными препаратами приводит к расширению спектра действия, аддитивным и синергическим эффектам возрастания антибактериальной активности [11, 12]. Антибактериальные свойства наночастиц серебра обуславливают их использование в материале катетеров, костных цементов, стоматологических препаратов для устранения зубного налета [13]. Наночастицы серебра включают в состав упаковочных материалов, так как они препятствуют росту и переносу колоний бактерий, повышая эффективность и время хранения скоропортящихся пищевых продуктов [14]. Краски и лаки с антибактериальными свойствами, содержащие наночастицы серебра, используют в детских и медицинских учреждениях [15]. Использование наночастиц серебра в сельском хозяйстве позволяет повысить эффективность прорастания семян, оказывает положительное влияние на рост растений. Однако в данном случае особенно важно соблюдать дозировки, так как избыток серебра вызывает негативные эффекты [16].

Для получения наночастиц серебра используют различные физические, химические и биологические методы. Физические методы получения этих частиц основаны на таких процессах, как электрический дуговой разряд [17], испарение-конденсация [18], измельчение в мельницах [19], лазерная абляция [20]. Для получения наночастиц серебра используют также криохими-

ческий метод, основанный на испарении-конденсации паров металла совместно с парами стабилизирующего лиганда [21]. Недостатком этих методов является необходимость использования сложного, энергозатратного и дорогостоящего оборудования. В последние десятилетия биологический синтез наночастиц серебра проведен с использованием ряда бактериальных штаммов (Staphylococcus aureus, Rhodococcus, Brevundimonas revundimonas, Bacillus, Esc herichia coli, Lactobacillus bulgaricus) и грибов (Aspergillus flavus, Cladosporium cladosporioides, Aspergillus terreus) [22-25]. Наиболее часто используемые химические методы получения наночастиц серебра основаны на взаимодействии предшественника (соли серебра) с различными восстановителями. В зависимости от природы восстановителя и условий формирования частиц выделяют боргидридный, цитратный, N,Nдиметилформамидный и полиольный методы, реакцию Толленса и метод синтеза в обратных мицеллах [26, 27]. Химические методы являются простыми и эффективными способами получения наночастиц серебра. Однако они предполагают использование большого количества неэкологичных и в ряде случаев токсичных реагентов, стабилизаторов, растворителей. Зеленый синтез наночастиц серебра с использованием в качестве реагентов природных материалов является наиболее простым, экономичным, быстрым и экологически чистым методом, который нивелирует недостатки химических, биологических и физических методов [28, 29]. Он не использует неэкологичные и токсичные реагенты и стабилизаторы, не требует наличия дорогостоящего оборудования и не связан с трудностями выращивания и хранения бактериальных культур и грибов. Растительные экстракты содержат различные биомолекулы, в том числе флавоноиды, терпеноиды, алкалоиды, фенольные соединения и витамины, которые действуют как восстановители и стабилизирующие агенты. Если для получения наночастиц серебра использовать экстракт лекарственного растения, то он может также служить активным компонентом (антибактериальным, противовоспалительным) сложной лекарственной композиции.

В настоящей работе водные экстракты лекарственных растений *Matricaria chamomilla* и *Calendula officinalis* с противовоспалительными и слабыми антибактериальными свойствами использованы для синтеза наночастиц серебра. Рассмотрено влияние различных параметров, таких как природа экстракта, концентрация реагентов, условия приготовления экстракта, на размер частиц и протекание процесса. Антибактериальная активность полученных образцов охарактеризована по отношению к E. coli и S. aureus.

Экспериментальная часть

Используемые реактивы: нитрат серебра («Ленреактив», «х.ч.»), ромашки цветки (Фармацвет. высушенное сырье, соответствующее ФС.2.5.0037.15), ноготков цветки (Фармацвет, высушенное сырье, соответствующее ФС.2.5.0030.15), гидроксид натрия («Русхим», «ч.д.а.»), ацетат свинца II 3-водный («Русхим», «ч.д.а.»), серная кислота («Русхим», «х.ч.»), цинк гранулированный («Русхим», «ч.д.а.»), цитрат натрия 2-водный («Русхим», «ч.»), карбонат натрия («Русхим», «ч.»), сульфат меди 5-водный («Русхим», «ч.»), хлорид железа III 6-водный («Русхим», «ч.»), аммиак водный («Сигма Тек», «ч.д.а.»), уксусная кислота ледяная («Русхим», «х.ч.»), хлороформ стабилизированный («ХИМ-МЕД», «х.ч.»), йодид калия («Русхим», «ч.»), йод кристаллический («Русхим», «ч.»).

Для приготовления растительных экстрактов 3 и 10 г растительного сырья помещали в лабораторный стакан с 200 мл дистиллированной воды, нагретой до 90 °C. Стакан оставляли при комнатной температуре, нагревали на водяной бане до 90 °C или кипятили на электрической плитке в течение 1 ч. Наночастицы серебра получали следующим образом: к 5 мл растительного экстракта добавляли 5 мл водного раствора нитрата серебра с концентрацией 0,008 моль/л и оставляли при комнатной температуре на 24 ч. Образование коллоидных растворов сопровождалось изменением их окраски на более темную. Использование экстрактов, полученных кипячением растительного сырья или с использованием ≥10 г растительного сырья не приводило к образованию наночастиц. Формирование наночастиц серебра не происходило также при использовании концентрации серебра >0,012 моль/л. Вероятно, реакция в данном случае не протекала в связи с разрушением молекул восстановителей и стабилизирующих агентов при кипячении растительного сырья, а также за счет протекания побочных процессов с образованием осадков при избыточной концентрации одного из реагентов.

Полученные растворы помещали в металлические поддоны, замораживали жидким азотом (-196 °C) и помещали на 24 ч в лиофильную сушку Advantage Wizard 2:0 (VirTis,

США) при температуре на конденсаторе -50...-55 °C, постепенном нагревании продукта от -30 до +30 °C и остаточном давлении в камере $(6-8) \cdot 10^{-2}$ Торр. УФ-спектры водных растворов образцов и предшественников регистрировали на спектрофотометре Jasco V-770 (Jasco, Япония) в интервале 200-600 нм. Для полученных коллоидных растворов распределение частиц по размерам методом динамического светорассеяния (DLS) и дзета-потенциал определяли на анализаторе размера частиц Brookhaven (Brookhaven Instruments Corporation, CIIIA). Микрофотографии и электронные дифрактограммы образцов получали на просвечивающем электронном микроскопе LEO 912 AB Omega (ZEISS, Германия) и сканирующем электронном микроскопе FEI QUANTA 650 FEG (Thermo Fisher Scientific, Хиллсборо, Орегон, США) центра коллективного пользования Института физической химии и электрохимии им. А.Н. Фрумкина РАН. ИК-Фурье-спектры порошкообразных образцов снимали по методике диффузного отражения в диапазоне 4000-400 cm⁻¹ по 32 скана с разрешением 1 см⁻¹ на спектрометре Bruker Tensor II (Германия) с приставкой нарушенного полного внутреннего отражения (НПВО) ATR platinum.

Определение антибактериальной активности образцов осуществляли диско-диффузионным методом, с использованием дисков фильтровальной бумаги. В качестве тест-культур использовали бактериальные клетки E. coli и S. aureus, полученные из коллекции бактериальных культур кафедры микробиологии биологического факультета МГУ имени М.В. Ломоносова. Эксперименты проводили в чашках Петри, содержащих 20 мл агаризованной питательной среды, подсушенной в течение суток (толщина слоя среды 4 мм). Измерение зон задержки роста тест-культур проводили через 24 ч инкубации. Статистически достоверные результаты получали девятикратным повторением измерений зон задержки роста для каждой серии образцов.

Результаты и их обсуждение

Согласно литературным данным [30–36], в состав растительного сырья цветков Matricaria chamomilla и Calendula officinalis входят флавоноиды, терпеноиды, кумарины, танины, катехины, сапонины, полисахариды, алкалоиды и гликозиды. Однако не все эти соединения могли перейти в водный экстракт, поэтому проведены качественные реакции, проверяющие наличие этих классов соединений (таблица) в экстрактах, используемых при синтезе наночастиц серебра.

Качественное определение классов соединений, входящих в состав водных экстрактов цветков Matricaria chamomilla и Calendula officinalis

	Описание качественной реакции	Наличие	
Класс соединений		Matricaria chamomilla	Calendula officinalis
Флавоноиды	ацетат 10%-го свинца смешивали с растительными экстрактами (1 мл); о наличии флавоноидов в экстракте свидетельствовало выпадение желтого осадка	+ выпал осадок	+ выпал осадок
Терпеноиды	к $0,5$ г экстракта добавили 2 мл хлороформа, затем осторожно добавили конц. H_2SO_4 (3 мл) для образования слоя; красновато-коричневое окрашивание этого слоя указывает на присутствие терпеноида	+ узкое четко выраженное коричневое кольцо	+ широкое размытое коричневое кольцо
Кумарины	3 мл 10%-го NaOH смешивали с 1 мл экстрактов; о наличии кумаринов свидетельствует появление желтой окраски	+ желтая окраска	± бледно-желтая окраска
Таннины, катехины	смешивали две-три капли 1%-го ацетата свинца и 0,5 мл экстракта; о наличии таннинов в составе экстракта свидетельствует выпадение белого осадка	- помутнение, нет осадка	± бело-желтый осадок
Сапонины	около 1 мл экстракта добавляли к 3 мл бидистиллята, а затем смесь энергично встряхивали; о наличии сапонинов свидетельствует пенообразование	+ пенообразование	+ пенообразование
Полисахариды	около 2 мл фильтрата смешивали с несколькими каплями реактива Бенедикта и осторожно нагревали; выпадение оранжево-красного осадка свидетельствует о наличии в составе экстракта полисахаридов	_	_
Алкалоиды	1 мл экстракта смешивали с несколькими каплями реактива Вагнера. Выпадение коричневого осадка свидетельствует о наличии алкалоидов в составе экстракта	_	_
Гликозиды	около 2 мл экстракта смешали с 2 мл ледяной уксусной кислоты, содержащей каплю раствора хлорида железа, образование кольца коричневого цвета указывает на присутствие гликозида	_	_

Проведенные качественные реакции показали, что в состав полученного водного экстракта цветков *Matricaria chamomilla* входили флавоноиды, терпеноиды, кумарины и сапонины. Водный экстракт цветков *Calendula officinalis*

содержал флавоноиды, терпеноиды, кумарины, танины, катехины и сапонины.

В электронных спектрах в видимой и УФобласти водного экстракта *Matricaria chamomilla* (рис. 2) присутствуют пики поглощения при 267

и 316 нм, которые, согласно литературным источникам, свидетельствуют о присутствии веществ фенольной природы — флавоноидов, дубильных веществ, хлорофиллов и фенолкарбоновых кислот [37, 38]. Добавление к растительному экстракту раствора хлорида алюминия дает батохромный сдвиг полосы с максимумом 316 нм в длинноволновую область к 375 нм. Эта

реакция является селективной для флавоноидов и позволяет подтвердить наличие именно этих фенольных соединений в экстракте. После протекания реакции с нитратом серебра в электронном спектре растительного экстракта *Matricaria chamomilla* появляется полоса плазмонного резонанса наночастиц серебра при 450 нм, характерная для наночастиц серебра размером 20–30 нм

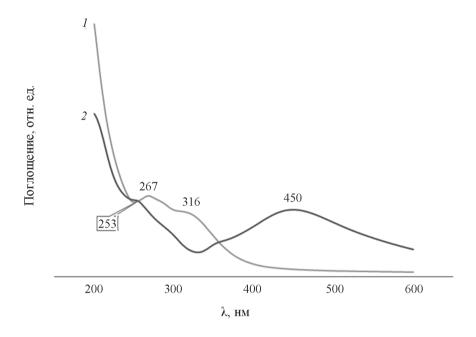


Рис. 1. У Φ -спектры водного экстракта *Matricaria chamomilla* до (1) и после (2) его реакции с нитратом серебра

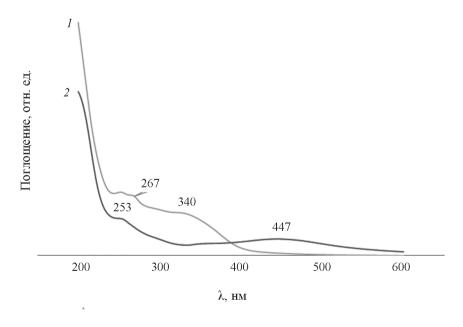


Рис. 2. УФ-спектры водного экстракта Calendula officinalis до (1) и после (2) его реакции с нитратом серебра

[39], и исчезает полоса поглощения, характерная для флавоноидов (рис. 1).

В случае экстракта календулы мы наблюдали схожие изменения в электронном спектре. Спектр исходного водного экстракта *Calendula officinalis* (рис. 2) содержит полосы поглощения при 253, 267 и 340 нм, которые характерны для хлорофиллов, дубильных веществ, фе-

нолкарбоновых кислот и флавоноидов [38, 40]. Поглощение при 340 нм относится к флавоноидам, так как при добавлении раствора хлорида алюминия к экстракту происходит батохромный сдвиг этой полосы к 382 нм. Образование наночастиц серебра сопровождается появлением поглощения поверхностного плазмонного резонанса наночастиц серебра с максимумом при 447 нм

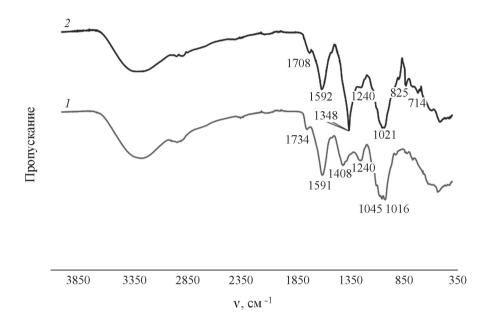


Рис. 3. ИК-спектры высушенных криогенно образцов: водного экстракта Matricaria $chamomilla\ (1)$ и продукта его взаимодействия с нитратом серебра (2)

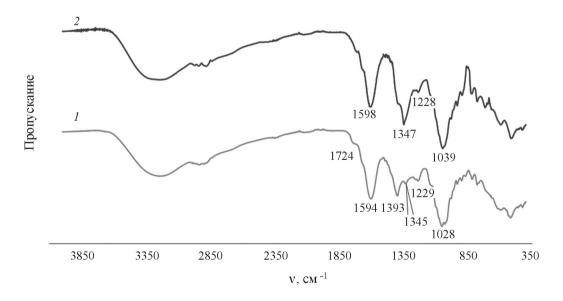
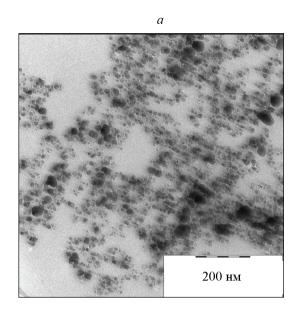
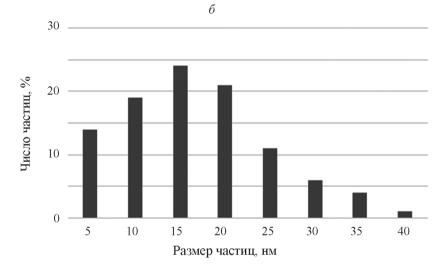
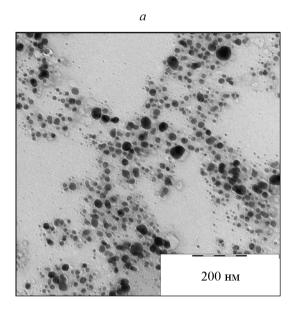



Рис. 4. ИК-спектры высушенных криогенно образцов: водного экстракта *Calendula officinalis* (1) и продукта его взаимодействия с нитратом серебра (2)




Рис. 5. Микрофотография ПЭМ (a) и распределение частиц по размерам (δ) , наночастиц серебра, полученных с использованием водного экстракта Matricaria chamomilla

и исчезновением поглощения флавоноидов при 340 нм (рис. 2).

Исходные растительные экстракты и коллоидные растворы были высушены криогенно и охарактеризованы методом ИК-спектроскопии. ИК-спектр исходного экстракта *Matricaria chamomilla* (рис. 3) содержал полосы валентных колебаний спиртов и карбоновых кислот при 3257 см⁻¹, валентных колебаний С–Н-групп при 2900 см⁻¹, валентных колебаний С=О-групп альдегидов, кетонов, карбоновых кислот при 1734 см⁻¹, валентных колебаний ароматического кольца при 1591 см⁻¹, колебаний связи С–О–Н третичных спиртов и фенолов при 1375 и 1408 см⁻¹, колебаний связей С–О–Н спиртов и С–О–С простых циклических и ароматических эфиров при 1240 см-1, а также широкое поглощение в области 900-1100 см-1 колебаний С-О-С простых эфиров и О-Н-групп спиртов и карбоновых кислот. Спектр исходного экстракта Calendula officinalis (рис. 4) близок к спектру экстракта цветков ромашки. В этом спектре также присутствуют полосы валентных колебаний спиртов и карбоновых кислот при 3257 см-1 валентных колебаний С-Н-групп при 2900 см-1, валентных колебаний С=О-групп альдегидов, кетонов, карбоновых кислот при 1724 см⁻¹, валентных колебаний ароматического кольца при 1594 см⁻¹, колебаний связи С-О-Н спиртов и фенолов при 1393 см⁻¹, колебаний связей С-О-Н спиртов и С-О-С простых эфиров (циклических и ароматических) при 1229 см^{-1} , а также широкое поглощение в области 900–1100 см⁻¹ колебаний С–О–С простых эфиров и О–Н-групп спиртов и карбоновых кислот. После образования наночастиц серебра спектр образцов меняется. Полоса валентных колебаний О–Н-групп становится шире, а максимум превращается в плато от 3205–3330 см⁻¹, что, вероятно, связано с изменением соотношения О–Н-групп спиртов и карбоновых кислот, обусловленное частичным окислением спиртовых и альдегидных групп. Полоса валентных колебаний С=О также меняет интенсивность и положение до 1708 и 1694 см⁻¹ в случае экстрактов *Matricaria chamomilla* и *Calendula officinalis* соответственно в связи с частичным окислением спиртовых и

альдегидных групп, формированием новых соединений с группой С=О. Интенсивность полос колебаний С=О-Н третичных спиртов и фенолов при 1393, 1408 см⁻¹ снижается, зато растет интенсивность полос при 1347–1348 см⁻¹, которые можно отнести к колебаниям С-Н-групп альдегидов, кетонов и карбоновых кислот.

Согласно данным, полученным методом динамического светорассеяния, средний гидродинамический радиус частиц серебра составляет 34±8 и 28±10 нм для образцов, полученных с использованием *Matricaria chamomilla* и *Calendula officinalis* соответственно. Высокую стабильность частиц подтверждает значение их дзета-потенциала, превышающее 30 мВ:

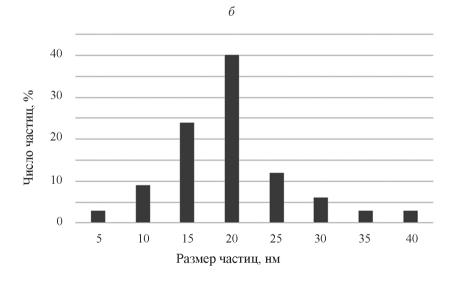


Рис. 6 Микрофотография ПЭМ (a) и распределение частиц по размерам (δ) , наночастиц серебра, полученных с использованием водного экстракта Calendula officinalis

+34 и +36 мВ для частиц, стабилизированных *Matricaria chamomilla* и *Calendula officinalis* соответственно, а также постоянство их состава и размера в течение полутора лет, согласно результатам электронной спектроскопии, динамического светорассеяния и микрофотографиям ПЭМ.

Как видно из микрофотографий ПЭМ (рис. 5, a; 6, a,), размер частиц, полученных с использованием водных экстрактов *Matricaria chamomilla* и *Calendula officinalis*, составляет 2–40 нм. Электронные дифрактограммы полученных частиц соответствуют ГЦК-решетке серебра. На основании нескольких микрофотографий построены диаграммы распределения частиц по размерам, которые приведены на (рис. 5, δ ; 6, δ ,). Полученные значения среднего размера частиц заметно ниже значений, полученных методом динамического светорассеяния. Различия связаны с тем, что метод динамического светорассеяния определяет гидродинамический радиус частиц вместе со стабилизирующими агентами.

Диско-диффузионным методом с использованием бактериальных штаммов *E. coli* и *S. aureus* оценена антибактериальная активность исходных растительных экстрактов-предшественников и полученных с их помощью растворов наночастиц серебра. Исходные растительные экстракты были неактивны в отношении рассматриваемых бактериальных штаммов: вокруг

дисков, пропитанных водными растительными экстрактами, отсутствовали зоны задержки роста. Зоны задержки роста вокруг дисков, пропитанных коллоидными растворами серебра, полученными и стабилизированными с использованием $Matricaria\ chamomilla$, составили $20\pm2\ u\ 17\pm2\ mm\ для\ E.\ coli\ u\ S.\ aureus\ cootветственно. В случае образца, содержащего наночастицы серебра и водный экстракт <math>Calendula\ officinalis$, зоны задержки роста были выше для $E.\ coli\ (23\pm2\ mm)$ и ниже для $S.\ aureus\ (15\pm2\ mm)$.

Таким образом, использование методов зеленого синтеза наночастиц серебра, в которых восстановителями и стабилизаторами служат водные экстракты Matricaria chamomilla и Calendula officinalis, позволяет получить растворы наночастиц серебра со средним размером 15±4 и 20±4 нм соответственно. В качестве одного из основных восстановителей ионов серебра служат соединения класса флавоноидов. Полученные коллоидные растворы стабильны. Размер и состав исследуемых частиц не меняются с течением времени. В отличие от исходных экстрактов Matricaria chamomilla и Calendula officinalis, полученные и стабилизированные с их помощью наночастицы серебра активны в отношении грамположительных (S. aureus) и грамотрицательных (E. coli) бактериальных штаммов.

СПИСОК ЛИТЕРАТУРЫ

- 1. Shabatina T.I., Bochenkov V.E. Smart Nanosystems for Biomedicine, Optoelectronics and Catalysis. IntechOpen (London, GB), 2020, 214 p. ISBN: 978-1-83880-253-0, (10.5772/intechopen.83226).
- 2. Bochenkov V.E., Shabatina T.I. // Biosensors. 2018. 8 (4). 120 (10.3390/bios8040120).
- 3. Tan P., Li H., Wang J., Gopinath S. C. // Biotechnology and Applied Biochemistry. 2021. 68 (6). 1236–1242 (10.1002/bab.2045).
- 4. Beck F., Loessl M., Baeumner A.J. // Microchimica Acta. 2023. 190. 91 (10.1007/s00604-023-05666-6).
- Trakhtenberg L.I., Gerasimov G.N., Aleksandrova L.N., Potapov V.K. // Radiation Physics & Chemistry. 2002. 65 (4–5). 479–485 (10.1016/S0969-806X(02)00358-4).
- Achmad H., Al-Hamdani M.M., Ali S.A.J., Kareem A.K., Al-Gazally M.E., Ramírez-Coronel A.A., Ali S.H.J. // Microchemical Journal. 2023. 189. 108552 (10.1016/j.microc.2023.108552).
- 7. Bouafia A., Laouini S.E., Ahmed A.S.A., Soldatov A.V., Algarni H., Feng Chong K., Ali G.A.M. // Nanomaterials. 2021. 11. 2318 (10.3390/nano11092318).
- 8. Sangno R., Maity S., Mehta R.K. // Procedia Computer Science. 2016. 92. 549–553 (10.1016/j.procs.2016.07.381).

- 9. Bonsak J., Mayandi J., Thøgersen A., Stensrud Marstein E., Mahalingam U. // Physica status solidi C. 2011. 8. 924–927 (10.1002/pssc.201000275).
- Shabatina T., Vernaya O., Shumilkin A. // Materials.
 2022. 15 (10). 3602 (10.3390/ma15103602).
- 11. Shabatina T.I., Vernaya O.I., Melnikov M.Y. // Molecules. 2023. 28 (4) (1603. 10.3390/molecules28041603).
- 12. Верная О.И., Шабатин В.П., Семенов А.М., Шабатина, Т.И. // Вестн. Моск. ун-та. Серия 2: Химия. 2016. Т. 57. № 6. С. 388–391 (10.3103/S002713141701014X).
- 13. Naganthran A., Verasoundarapandian G., Khalid F.E., Masarudin M.J., Zulkharnain A., Nawawi N.M., Karim M., Che Abdullah C.A., Ahmad S.A. // Materials. 2022. 15. 427 (10.3390/ma15020427).
- 14. Ghosh S., Roy S., Naskar J., Kole R.K. // J. Nanomaterials. 2023. 1. 2781667 (10.1155/2023/2781667).
- Yadav A. K., Sharma A., Khanna P. K., Chandra R., Tripathi A., Kumar D., Kandpal M. Antimicrobial Coatings: Recent Advances and Development in Healthcare Systems. Functional Coatings for Biomedical, Energy, and Environmental Applications. 2024. 105–122. ISBN: 9781394263172. John Wiley & Sons, Inc (10.1002/9781394263172.ch5)

- 16. Khan S., Zahoor M., Khan R.S., Ikram M., Islam, N.U. // Heliyon. 2023. 9 (6) (10.1016/j.heliyon.2023.e16928).
- 17. Jabłońska J., Jankowski K., Tomasik M., Cykalewicz D., Uznański P., Całuch S., Mazurek, P. // SN Applied Sciences. 2021. 3. 1–10 (10.5281/zenodo.14568527).
- Gafner Y., Ryzhkova D.A., Gafner S.L., Gromov D.G., Dubkov S.V., Novikov D.V., Poletaev G.M. // Materials Chemistry and Physics. 2024. 326. 129810 (10.1016/j. matchemphys.2024.129810).
- Reverberi A.P., Vocciante M., Salerno M., Soda O., Fabiano B. // Reaction Chemistry & Engineering. 2022. 7
 888–897 (10.1039/D1RE00391G).
- Ondieki A.M., Birech Z., Kaduki K.A., Mwangi P.W., Mwenze N.M., Juma M., Maaza M. // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 2023. 296. 122694 (10.1016/j.saa.2023.122694).
- 21. Герасимов Г.Н., Николаева Е.В., Смирнова Е.И., Сочилин В.А., Трахтенберг Л.И. // Докл. АН. 2001. 380 (1). 213–216 (10.1023/A:1011979117340).
- 22. Duman H., Eker F., Akdaşçi E., Witkowska A.M., Bechelany M., Karav S. // Nanomaterials. 2024. 14. 1527 (10.3390/nano14181527).
- 23. John M.S., Nagoth J.A., Ramasamy K.P., Mancini A., Giuli G., Miceli C., Pucciarelli S. // Marine Drugs. 2022. 20. 558 (10.3390/md20090558).
- 24. Yuan Q., Bomma M., Xiao Z. // Materials. 2019. 12. 4180 (10.3390/ma12244180).
- 25. Naseer Q.A., Xue X., Wang X., Dang S., Din S.U., Kalsoom J., Jamil J. // Brazilian Journal of Biology. 2021. 82. e232434 (10.1590/1519-6984.232434).
- Abbas R., Luo J., Qi X., Naz A., Khan I.A., Liu H., Yu S., Wei J. // Nanomaterials. 2024. 14. 1425 (10.3390/nano14171425).
- Magdy G., Aboelkassim E., Abd Elhaleem S. M., Belal F. // Microchem. J. 2024. 196. 109615 (10.1016/j.microc.2023.109615).
- 28. Huq M.A., Ashrafudoulla M., Rahman M.M., Balusa-

- my S.R., Akter S. // Polymers. 2022. 14. 742 (10.3390/polym14040742).
- Alharbi N.S., Alsubhi N.S., Felimban, A.I. // J. Radiation Res. Appl. Sci. 2022. 15 (3). 109–124 (10.1016/j.jrras.2022.06.012).
- 30. Thapaliya E.R., Raymo F.M., Garcia-Amorós J. // Inorganica Chimica Acta. 2017. 468. 82–90 (10.1016/j. ica.2017.05.023).
- 31. Афанасьева П.В., Куркина А.В. // Аспирантский вестн. Поволжья. 2015. № 5-6. С. 323-326.
- 32. Полупанова Ю.В., Качкин К.В. // Вест. Воронежского госуд. универ. Серия: Химия. Биология. Фармация. 2019. 1. 153–158.
- Постраш И. Ю., Соболева Ю. Г., Андрущенко В. С. Антиокислительная активность различных экстрактов цветков ромашки аптечной // Вестн. АПК Верхневолжья. 2020. 2. 50 (10.35694/YARCX.2020.50.2.003).
- 34. Kotov S., Gontova T., Kononenko N., Chernyavski E., Chikitkina V. // Pharmacia. 2022. 69. 1. 237–247 (10.3897/pharmacia. 69.e77624).
- 35. Rajan N., Tiwari S., Baath R.S., Dwivedi U.S. // Int. J. Analytical Exp. modal analysis. 2021. 13. 6.
- 36. Esteves da Silva J.C., Charfi S., Candela Castillo M.E., Lamarti A., Arnao M.B. // Life. 2022. 12. 4. 479 (10.3390/life12040479).
- 37. Альхедер Р., Мусса, Р., Копытько Я.Ф., Ал,.З.М., Суслина С.Н. // Вопросы обеспечения качества лекарственных средств. 2023. 3. 41 (10.34907/ JPQAI.2023.48.33.003).
- Palm D.M., Agostini A., Tenzer S., Gloeckle B.M., Werwie M., Carbonera D., & Paulsen H. // Biochemistry. 2017.
 12. 1726–1736 (10.1021/acs.biochem.7b00075).
- 39. Singh A., Jha A., Srivastava G., Sarkar P., Gogoi P. // Int. J. Scientific Technology Res. 2013. 2. 11. 153–157.
- 40. Швыдкий В.О., Смирнова А.Н., Волков В.А., Шишкина Л.Н. // Химия растительного сырья. 2020. 1. 67—72 (10.14258/jcprm.2020016115).

Сведения об авторах

Александра Сергеевна Рыжкова – аспирант кафедры химии МГТУ им. Н.Э. Баумана (ryzhkova@bmstu.ru);

Алина Алексеевна Макеева – студентка химического факультета МГУ имени М.В. Ломоносова (alina.makeeva@chemistry.msu.ru);

Ольга Ивановна Верная – ст. науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, доцент кафедры химии МГТУ им. Н.Э. Баумана, канд. хим. наук (vernayaoi@my.msu.ru);

Андрей Владимирович Шабатин – науч. сотр. Института физической химии и электрохимии им. А.Н. Фрумкина РАН, канд. физ.-матем. наук (5dron5@mail.ru);

Александр Михайлович Семёнов – вед. науч. сотр. кафедры микробиологии биологического факультета МГУ имени М.В. Ломоносова, ст. науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, докт. биологических наук (amsemenov@list.ru);

Аниндья Бозе — профессор кафедры фармацевтического анализа факультета фармацевтических наук (SPS) в составе Шикша-О-Анусандхан (SOA) — частного университета в Бхубанешваре, штат Одиша, Индия, докт. медицинских наук, (anindyabose in@yahoo.com; aninyabose@soa.ac.in);

Татьяна Игоревна Шабатина — зав. лабораторией химии низких температур, вед. науч. сотр. кафедры химической кинетики химического факультета МГУ имени М.В. Ломоносова, профессор кафедры химии МГТУ имени Н.Э. Баумана, докт. хим. наук, доцент (tatyanashabatina@yandex.ru).

Вклад авторов

Все авторы сделали эквивалентный вклад в подготовку публикации.

Конфликт интересов

Авторы заявляют об отсутствии конфликта интересов.

Соблюдение этических стандартов

В данной работе отсутствуют исследования на людях и животных. Статья поступила в редакцию 10.04.2025; одобрена после рецензирования 16.04.2025; принята к публикации 23 .05.2025.