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Аннотация. На основе неэмпирических данных, полученных с помощью много-
конфигурационного метода квантовой химии высокого уровня точности, постро-
ены и обучены нейронные сети с архитектурами многослойной сети прямого рас-
пространения и E(3)-эквивариантной графовой сети для предсказания энергий 
основного и первых двух электронно-возбужденных состояний молекулярного 
катиона метаниминия CH2NH2

+. Показано, что архитектура E(3)-эквивариантной 
графовой нейронной сети демонстрирует более высокую точность. С использова-
нием обученной сети исследован фрагмент поверхностей потенциальной энергии 
катиона вблизи области конического пересечения первого возбужденного и ос-
новного состояний, играющий важную роль в механизме внутренней конверсии и 
реакциях фотоизомеризации. Показано, что нейронная сеть хорошо воспроизво-
дит топографию поверхностей потенциальной энергии двух электронных состоя-
ний в области их конического пересечения.
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В фотохимии многоатомных молекул элек-
тронно-колебательная релаксация, осуществля-
емая через конические пересечения поверхно-
стей потенциальной энергии (ППЭ) электрон-
ных состояний одинаковой симметрии, приво-
дит к сверхбыстрой внутренней конверсии и 
лежит в основе молекулярных механизмов фото-
рецепции и защиты от УФ-излучения. При таких 
неадиабатических переходах определенные ко-
лебательные моды приводят к взаимодействию 
между двумя адиабатическими поверхностями, 

ORIGINAL ARTICLE

APPLICATION OF NEURAL NETWORKS FOR INVESTIGATING 
POTENTIAL ENERGY SURFACES OF ELECTRONICALLY EXCITED 
STATES AND INTERNAL CONVERSION MECHANISMS OF ORGANIC 
MOLECULES

Daniil N. Chistikov1, Vladimir E. Bochenkov1, Denis A. Firsov1, Vadim V. 
Korolev1, 2, Anastasia V. Bochenkova1

1 Lomonosov Moscow State University, Chemistry department
2 Lomonosov Moscow State University, MSU Institute for Artificial Intelligence
Corresponding author: Vladimir E. Bochenkov, boch@kinet.chem.msu.ru 
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+. It is 
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которые в итоге пересекаются. Через кониче-
ские пересечения двух адиабатических ППЭ 
электронно-колебательный перенос энергии при 
безызлучательных переходах происходит наибо-
лее эффективно. 

Для корректного теоретического описания 
молекулярных систем с квазивырождением не-
обходимо применять многоконфигурационные 
методы квантовой химии [1], учитывающие как 
статическую, так и динамическую электронную 
корреляцию. В настоящее время для исследова-
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ний неадиабатической динамики, а также для на-
хождения конических пересечений и оптимиза-
ции геометрии возбужденных состояний обычно 
применяют метод самосогласованного поля в 
полном активном пространстве (CASSCF), кото-
рый не учитывает эффекты динамической элек-
тронной корреляции. Перемасштабирование по-
верхностей потенциальной энергии, полученных 
на уровне CASSCF, также используется в ряде 
работ [2]. Однако такие подходы следует рассма-
тривать с осторожностью, поскольку известно, 
что метод CASSCF часто приводит к неправиль-
ному порядку и характеру возбужденных состо-
яний [3, 4]. Более предпочтительными являются 
многоконфигурационные методы, основанные 
на построении референсной волновой функции 
с помощью метода CASSCF и учитывающие ди-
намическую электронную корреляцию в рамках 
теории возмущений (MRPT) или конфигураци-
онного взаимодействия (MRCI) [5]. Однако эти 
методы требуют значительных вычислительных 
ресурсов и времени.

В частности, неадиабатическая молекулярная 
динамика с расчетом квантовых сил «на лету» 
требует чрезвычайно больших вычислительных 
затрат, в особенности при использовании для 
расчета электронной структуры методов высо-
кого уровня точности. Это определяет необхо-
димость взвешенного выбора стратегии моде-
лирования для сохранения баланса между точ-
ностью и скоростью вычислений. В последние 
годы значительные усилия направлены на разра-
ботку подходов к построению ППЭ с помощью 
методов машинного обучения [6, 7]. Адаптация 
и развитие передовых методов искусственно-
го интеллекта для моделирования электронно-
возбужденных молекулярных систем являются 
важной областью теоретических исследований, 
которая бурно развивается в последние годы. 
Использование нейросетевых потенциалов вза-
имодействия может значительно снизить вычис-
лительные затраты, что позволит расширить об-
ласть применимости методов квантовой химии 
высокого уровня точности в исследованиях ме-
ханизмов и динамики сложных молекулярных 
процессов. 

Катион метаниминия CH2NH2
+ является про-

стейшим представителем протонированных ос-
нований Шиффа. Эта система часто выступает 
в качестве объекта исследования с помощью ме-
тодов квантовой химии. С одной стороны, благо-
даря небольшому размеру она хорошо подходит 
для тестирования новых квантовохимических 

методов и алгоритмов. С другой стороны, дан-
ный катион представляет значительный инте-
рес для астрохимии: процессы с участием этого 
иона играют важную роль в химических реак-
циях, протекающих в атмосферах ряда небес-
ных тел. В частности, этот ион зарегистрирован 
в верхних слоях атмосферы Титана [8]. Кроме 
того, методика моделирования фотоиндуциро-
ванных реакций, отработанная на катионе ме-
таниминия, может быть в дальнейшем примене-
на для исследования фотохимических реакций 
с участием хромофорной группы зрительного 
белка родопсина – протонированного основания 
Шиффа ретиналя, фотоизомеризация которого 
является первичным процессом при передаче 
зрительного сигнала [9]. В настоящей работе на 
примере иона CH2NH2

+ проведен анализ приме-
нимости нейросетевых моделей для построения 
достоверных аппроксимаций поверхностей по-
тенциальной энергии электронных состояний в 
области их конического пересечения и оценена 
точность предсказания полученной нейросете-
вой модели.

Расчетная часть

Для обучения нейронных сетей в настоящей 
работе был использован набор данных, полу-
ченный ранее в [10]. В его основе находятся 
геометрические конформации ,  полученные 
сканированием по нормальным координатам 
катиона метаниминия, дополненные конфор-
мациями, полученными по адаптивной схеме 
выборки [11]. Эта схема автоматически иден-
тифицирует недостоверные области, не охва-
ченные начальным набором данных, используя 
симуляции динамики возбужденных состояний 
с использованием двух или более нейронных 
сетей (НС), которые независимо обучаются на 
основе одного и того же набора данных. На 
каждом шаге времени сравнивается средне-
квадратичная ошибка между предсказаниями 
разных НС каждого свойства и предопреде-
ленным порогом. В случае, когда любой из 
порогов превышается, соответствующая геоме-
трическая конформация считается находящейся 
в конформационной области с недостаточным 
числом точек обучения, и обучающий набор 
расширяется квантовохимическими данными 
для этой конформации. Процедура повторяется, 
пока конформационное пространство не будет 
достаточно полно охвачено для точных пред-
сказаний без дополнительных вычислений с ис-
пользованием методов квантовой химии.
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Массив данных для обучения получен мето-
дом MR-CISD с построением референсной вол-
новой функции методом CASSCF и дальнейшим 
учетом однократных и двукратных возбуждений 
в рамках метода конфигурационного взаимодей-
ствия в базисе aug-cc-pVDZ [10]. Использованы 
две архитектуры НС: полносвязная многослой-
ная сеть (FC) и E(3)-эквивариантная графовая 
сеть NequIP. Нейронные сети FC реализованы 
на языке Python с использованием библиотек 
numpy [12] и pytorch [13]. В качестве данных, 
передаваемых на вход полносвязной модели, ис-
пользовали матрицу обратных расстояний – зна-
чения обратных расстояний между всеми ядра-
ми в молекуле. Поскольку в массиве данных для 
обучения для каждой конформации доступны 
квантовохимические значения градиентов энер-
гии, полносвязная модель обучалась в двух ва-
риантах: без включения градиентов в функцию 
потерь при обучении (модель FCnograd) и с их 
включением (FCgrad). В первом случае функ-
ция потерь задается выражением (1), во втором 
случае – выражением (2). В данном случае M – 
число конформаций в обучающем наборе дан-
ных, N – число ядер в молекуле, E – значение 
энергии в каждой конформации, Fα – произво-
дная энергии по координате α. NN – значения, 
предсказываемые моделью, а QC – значения, 
рассчитываемые в рамках квантовой химии. 
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E(3)-эквивариантные графовые нейронные 
сети (GNN) [14, 15] являются расширением 
традиционных GNN, которые включают эк-
вивариантность по отношению к трехмерным 
евклидовым преобразованиям. Эти модели 
предназначены для работы с данными, струк-
турированными в виде графов, где узлы пред-
ставляют объекты, а ребра фиксируют взаи-
мосвязи или соединения между ними. E(3)-
эквивариантные GNN особенно подходят для 
задач, связанных с трехмерными геометриче-
скими данными, что позволяет эффективно ис-
пользовать их в таких областях, как разработка 
лекарств, материаловедение и робототехника 

[16]. Одним из вариантов таких сетей является 
сеть NequIP [17].

Для поиска гиперпараметров FC был автома-
тизирован случайный поиск по сетке и адаптиро-
вана скорость обучения. Оптимизация несколь-
ких параметров НС была выполнена для началь-
ного тренировочного набора из 100 точек. После 
процедуры адаптивной выборки тренировочный 
набор был увеличен вдвое. Каждая геометриче-
ская конформация была представлена в виде ма-
трицы обратных расстояний. Варьировали такие 
гиперпараметры НС, как тип функции активации 
(гиперболический тангенс и сдвинутая функция 
мягкого плюса, ln (0,5ex + 0,5)), число нейронов, 
число скрытых слоев, скорость обучения, ско-
рость регуляризации L2, число эпох, размер па-
кета (batch size) и множитель flr, который влияет 
на шаг обновления. Особое внимание уделялось 
оптимизации коэффициента регуляризации L2 от-
носительно заданного размера пакета и скорости 
обучения. Численные значения гиперпараметров 
для нейронных сетей FCgrad и FCnograd приве-
дены в табл. 1. Гиперпараметры нейронной сети 
NequIP были найдены с помощью автоматизиро-
ванного поиска по сетке (grid search). Численные 
значения параметров приведены в табл. 2. 

Для тестирования полученных поверхностей 
потенциальной энергии нами были локализова-
ны конические пересечения состояний S2/S1 и 
S1/S0. Эти конические пересечения хорошо из-
вестны и исследованы с помощью различных 
квантовохимических методов [18, 10]. Структу-
ра поверхностей потенциальной энергии вблизи 
конических пересечений играет ключевую роль 
при анализе сверхбыстрой неадиабатической 
динамики из возбужденных состояний. В связи 
с этим необходимо убедиться, что конические 
пересечения могут быть корректно описаны с 
помощью используемых моделей для аппрокси-
мации ППЭ.

Поиск конических пересечений проводили 
путем минимизации соответствующего лагран-
жиана

( ) ( ),ij i j i jL E E E E    

где Ei и Ej – энергии состояний Si и Sj  соот-
ветственно, а λ – неопределенный множитель 
Лагранжа. Минимизацию проводили методом 
SLSQP, используя библиотеку SciPy [19].

В качестве дополнительного теста проводили 
расчет частот нормальных колебаний в положе-
нии минимума ППЭ основного состояния. Часто-

(1)

(2)
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Т а б л и ц а  1

Основные гиперпараметры сетей FCgrad и FCnograd

Число скрытых слоев 8

Число нейронов в каждом скрытом слое 50

Скорость обучения, lr 1,0·10−1

Коэффициент затухания, flr 0,85

Шаги обновления для отжига скорости обучения lr 10

Коэффициент L2-регуляризации 3,0·10−7

Функция активации Shifted softplus

Оптимизатор LBFGS

ты нормальных колебаний рассчитывали путем 
диагонализации матрицы вторых производных 
энергии по масс-взвешенным декартовым коор-
динатам ядер:

21 .ij
i j i j

EF
m m x x




 

Примером использования полученных моде-
лей нейросетевых поверхностей потенциальной 
энергии может служить расчет полуклассической 
неадиабатической динамики.

Неадиабатическая динамика в рамках настоя-
щей работы рассчитана методом прыжков между 
поверхностями потенциальной энергии в форме 
Ландау–Зинера [20]. Вероятность неадиабатиче-
ского перехода между состояниями i и j вычисля-
ется по формуле:

3

,
2

i j
i j

i j

Z
P exp

Z

   
 
 



где Zij = │Ui – Uj│ –  расстояние между двумя ади-
абатическими поверхностями, а Z′′ij  – вторая про-
изводная этого расстояния по координате. 

В работе была использована численная реали-
зация этого метода неадиабатической динамики 
из пакета MLatom на языке Python [21].

Результаты и обсуждение

Нейронные сети с двумя рассмотренными 
выше архитектурами были обучены для пред-
сказания значений энергий основного (S0) и двух 
возбужденных (S1 и S2) электронных состояний 
катиона метаниминия:,. Предсказанные с помо-
щью нейронных сетей значения энергий пред-
ставлены на рис 1. Метрики качества обучения 

энергий для нейронной сети каждой архитекту-
ры приведены в табл. 3. Как мы можем видеть, 
добавление градиентов энергий к обучающей 
выборке улучшает метрики качества 1,5–2 раза 
как по MAE (mean absolute error, средняя аб-
солютная ошибка), так и по RMSE (root mean 
squared error, среднеквадратичная ошибка) для 
полносвязной сети. Эквивариантная нейронная 
сеть NequIP обучалась сразу на энергиях и гра-
диентах, поскольку этот вариант ожидаемо дол-
жен обеспечить наилучшее качество описания 
рассматриваемых поверхностей потенциальной 
энергии. Наблюдаемые метрики качества в слу-
чае архитектуры NequIP для состояний S1 и S2 
не хуже, чем метрики для полносвязной сети с 
учетом градиентов (FCgrad), при этом для со-
стояния S0 модель NequIP обеспечивает в 2 раза 
лучшее качество по MAE и в 3 раза лучшее ка-
чество по RMSE. 

На рис. 2, 3 показаны конформации, отвечаю-
щие точкам конических пересечений, найденные 
с помощью полученных аппроксимаций поверх-
ностей потенциальной энергии в виде эквивари-
антной нейронной сети (NequIP), а также полно-
связной нейронной сети с учетом градиентов 
при обучении (FCgrad). На тех же рисунках по-
казаны конформации, отвечающие точкам кони-
ческих пересечений, локализованные с помощью 
ab initio квантовохимического расчета в работе 
[10]. Можно видеть, что обе модели позволяют 
успешно находить рассматриваемые конические 
пересечения. Величины межъядерных расстоя-
ний описываются обеими моделями с примерно 
одинаковой точностью, при этом валентные углы 
описываются моделью NequIP заметно лучше. На 
рис. 4 показаны сечения фрагментов ППЭ состоя-
ний S0 и S1 вдоль координат пространства ветвле-
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ния вблизи конического пересечения, построен-
ные с помощью модели NequIP.

Однако можно отметить, что конформации, 
найденные с помощью модели FCgrad не обла-
дают правильной симметрией. В частности, это 
можно заметить на конформации конического 

Т а б л и ц а  3

Метрики качества обучения нейронных сетей архитектур FCgrad, FCnograd и NequIP (эВ) для предсказания 
энергий

Ошибка S0 S1 S2

FCnograd

MAE 0,021 0,071 0,086

RMSE 0,043 0,121 0,129

FCgrad

MAE 0,012 0,042 0,047

RMSE 0,0265 0,066 0,091

NequIP

MAE 0,0057 0,041 0,057

RMSE 0,00812 0,08178 0,08639

Т а б л и ц а  2 

Основные гиперпараметры сети NequIP

r_max 6,0

num_layers 4

l_max 2

num_features 64

num_basis 8

PolynomialCutoff_p 6

invariant_layers 2

invariant_neurons 64

log_batch_freq 100

learning_rate 0,005

batch_size 5

max_epochs 10

metrics_key validation_loss

optimizer_name Adam

lr_scheduler_name ReduceLROnPlateau

lr_scheduler_patience 100

lr_scheduler_factor 0,5

пересечения S2/S1 (рис. 3), если сравнить длины 
двух связей C–H или N–H между собой. В кван-
товохимическом расчете, а также в расчете, по-
лученном с помощью эквивариантной нейрон-
ной сети, эти расстояния равны, в то время как 
в модели FCgrad они получаются различными. 
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Это наблюдение отражает одно из важных разли-
чий представленных в данной работе архитектур 
нейронных сетей для описания поверхностей по-
тенциальной энергии. При аппроксимации ППЭ 
необходимо принимать во внимание три вида 
симметрии – инвариантность ППЭ относитель-
но трансляции молекулы как целого, инвари-
антность относительно вращения молекулы как 
целого, а также инвариантность относительно 
перестановок идентичных ядер. Первые два 
свойства симметрии выполняются для обеих 
архитектур за счет параметризации молекул 
межъядерными расстояниями без привязки к 
конкретным значениям декартовых координат 
ядер. Третье свойство, в свою очередь, выполня-
ется лишь для эквивариантной сети за счет вну-

Рис. 1. Диаграмма рассеяния расчётных (MR-CISD/aug-cc-pVDZ, ось абсцисс) и предсказанных значений 
энергии для тестовой выборки ионов метаниминия для состояний S0, S1, S2 (ось ординат). Показаны полно-
связная модель без учета градиентов энергии при обучении (верхний ряд), полносвязная модель с учетом 

градиентов энергии при обучении (средний ряд), модель NequIP (нижний ряд)

треннего представления результирующей энер-
гии в виде вклада от отдельных ядер:

( ),tot
i

E E i

где Ei – вклад от i-го ядра.
Для полносвязной сети в общем случае ин-

вариантность относительно перестановок иден-
тичных ядер не выполняется. Приближенно 
учесть ее можно за счет создания расширенного 
набора данных, в котором каждая конформация, 
входящая в обучающий набор, размножается на 
несколько конформаций, включающих все воз-
можные перестановки идентичных ядер, имею-
щих при этом одни и те же значения энергий и 
градиентов.
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Рис. 2. Геометрические конформации иона метаниминия в точке конического пересечения S1/S0, найденные 
при помощи поверхностей потенциальной энергии, полученных в рамках моделей NequIP и FCgrad, а также в 

рамках квантовохимического расчета (QC) по данным [10]

Рис. 3. Геометрические конформации иона метаниминия в точке конического пересечения S2/S1, найденные 
при помощи поверхностей потенциальной энергии, полученных в рамках моделей NequIP и FCgrad, а также в 

рамках квантовохимического расчета (QC) по данным [10]

Рис. 4. Сечения фрагментов двух ППЭ (эВ) состояний S0 и S1 иона метаниминия вблизи области 
конического пересечения



51
Вecтн. Моск. ун-та. Сер. 2. Химия. 2026. Т. 67. № 1 
Vestn. Mosk. un-ta. Ser. 2. Khimiya. 2026. T. 67. № 1

Рис. 5. Скан потенциальной энергии основного состояния катиона метаниминия при изменении угла между пло-
скостями H4H1C1 и N1H3H2 с помощью моделей NequIP (1) и FCgrad (2): А – конформация минимума основного 

состояния, R(C–N) = 1,29 Å; Б –  R(C–N) = 1,12 Å

На рис. 5 показан скан поверхности потен-
циальной энергии основного состояния при из-
менении торсионного угла между плоскостями 
H2C и NH2 вдоль связи C–N при двух значениях 
расстояний между ядрами C и N – 1,29 Å (соот-
ветствует значению минимума основного состо-
яния) и 1,12 Å. Значения длин связей C–H и N–H 
соответствуют значениям в минимуме основного 
состояния. Можно видеть, что кривые зависимо-
сти энергии от угла для модели с архитектурой 
NequIP в точности симметричны относительно 
угла 90 град., тогда как для модели FCgrad мы 
получаем лишь приближенную симметрию, что 
особенно заметно по кривой для конформации с 
более коротким расстоянием C–N. 

В табл. 4 показаны частоты колебаний в кон-
формации, соответствующей минимуму энергии 
основного состояния, найденные в рамках ab 
initio квантовохимического расчета [10] в срав-
нении с частотами колебаний, которые получены 
путем численного расчета матрицы вторых про-
изводных для моделей NequIP и FCgrad. Значения 
частот квантовохимического расчета могут быть 
найдены в приложении к работе [22]. Как мы мо-
жем видеть, частоты колебаний, рассчитанные 
в рамках модели NequIP отличаются от ориги-
нальных квантовохимических значений не более 
чем на 4–5 см–1, среднее отклонение составляет 
2,9 см–1, при этом отклонение в случае модели 
FCgrad составляет до 20 см–1, а среднее отклоне-
ние равно 12,3 см–1. 

Из полученных результатов можно сделать вы-
вод о том, что архитектура E(3)-эквивариантной 
графовой нейронной сети имеет более высокую 
точность по сравнению с многослойной полно-
связной нейронной сетью, что связано с более 
эффективным тензорным внутренним представ-
лением структуры молекул.

Интерес представляет также рассмотрение 
того, как отразится качество аппроксимации по-
верхностей потенциальной энергии на резуль-
татах неадиабатической динамики. Для расчета 
неадиабатической динамики начальные условия 
были сгенеригрованы с помощью распределе-
ния Вигнера при 0 К. Для генерации начальных 
условий были использованы частоты и векторы 
нормальных колебаний, полученные с помощью 
метода SA(3)-CASSCF(12,12) в базисе aug-cc-
pVDZ. В полученных конформациях молекула 
подвергалась вертикальному возбуждению в со-
стояние S2, после чего исследовалась ее неадиа-
батическая динамика на протяжении 100 фс. На 
рис. 6 показаны зависимости заселенностей каж-
дого из трех состояний от времени, усредненные 
по массиву из 600 траекторий для нейросетевых 
моделей FCgrad, FCnograd, NequIP, а также зави-
симости заселенностей для on-the-fl y неадиаба-
тической динамики с расчетом ab initio энергий 
и градиентов на каждом шаге, усредненные по 
массиву 90 траекторий из работы [10]. Исходные 
данные для обучения нейросетевых моделей, по-
лученных в настоящей работе, были сгенериро-
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Рис. 6. Зависимость заселенностей каждого из трех электронных состояний катиона метаниминия от времени, полу-
ченная в рамках неадиабатической динамики с моделями FCnograd (сверху справа), FCgrad (снизу слева), NequIP 
(снизу справа), а также полносвязной нейросетевой моделью из работы [10] (сверху слева), в сравнении с заселен-
ностями, полученными в рамках динамики с on-the-fl y расчетом энергий и градиентов с помощью квантовой химии 

по данным работы [10]  

ваны в рамках этой on-the-fly неадиабатической 
динамики. Как можно видеть, заселенности, 
полученные с помощью модели FCnograd, 
сильнее всего отличаются от кинетических 
кривых, рассчитанных ab initio; кроме того, 
расхождения начинаются достаточно рано 
по времени. Заселенности, полученные с по-
мощью FCgrad и NequIP, ведут себя сходным 
образом. На малых временах (до ~10 фс) за-
селенности, рассчитанные с помощью NequIP 
практически не отличаются от заселенностей 
ab initio. При этом расхождения существенно 
увеличиваются на более поздних временах. 
При сравнении результатов динамики с ней-

росетевым потенциалом с результатами дина-
мики ab initio необходимо также учесть, что 
заселенности ab initio получены по 90 траек-
ториям. При таком малом числе траекторий за-
селенности еще далеки от полной сходимости. 
Полученные результаты показывают необхо-
димость дальнейших исследований того, на-
сколько точными должны быть нейросетевые 
модели, используемые при аппроксимации по-
верхностей потенциальной энергии, для до-
стоверного моделирования неадиабатической 
динамики. По имеющимся литературным дан-
ным, систематический анализ этого вопроса 
не проводился. В табл. 5 представлены оцен-
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ки времени расчета энергии и градиентов для 
одного состояния молекулы метаниминия в 
единичной конформации с помощью модели 
NequIP, а также в рамках ab initio квантово-
химического расчета в программном пакете 
Firefly методом SA(3)-CASSCF(12,12) в базисе 
aug-cc-pVDZ. Как можно видеть, использова-
ние нейросетевого потенциала позволяет уско-
рить расчет как минимум на три порядка. Это 
позволяет при расчете неадиабатической дина-
мики получить значительно более достоверную 
статистическую оценку рассчитываемых вели-
чин, что достигается использованием большего 
числа траекторий за то же расчетное время.

Выводы

На основе неэмпирических квантовохими-
ческих данных построены и обучены нейрон-

ные сети разной архитектуры для предска-
зания энергии основного и электронно-воз-
бужденных состояний молекулярного катиона 
CH2NH2

+. Установлено, что архитектура E(3)-
эквивариантной графовой нейронной сети де-
монстрирует более высокую точность по срав-
нению с многослойной нейронной сетью пря-
мого распространения, что связано с более эф-
фективным тензорным внутренним представле-
нием структуры молекул.

Показана возможность построения фраг-
ментов ППЭ вблизи области конического 
пересечения возбужденного и основного со-
стояний с точностью, сравнимой с методами 
квантовой химии, что может быть использо-
вано для моделирования фотоиндуцированной 
неадиабатической динамики в реакциях фото-
изомеризации.

Т а б л и ц а  5

Оценка времени вычисления энергий и градиентов в единичной конформации для катиона метаниминия              
с помощью модели NequIP, а также в рамках ab initio расчета методом SA(3)-CASSCF (12,12) в базисе 

aug-cc-pVDZ с помощью пакета Firefl y 

Вариант расчета NequIP SA(3)-CASSCF (12,12) 

Время, с 1,0 3820,0

П р и м е ч а н и е. Расчет проводили в однопоточном режиме на процессоре Intel Xeon Gold 6154.

Т а б л и ц а  4

Частоты нормальных колебаний в положении минимума на поверхности основного электронного 
состояния катиона метаниминия, полученные в рамках моделей FCgrad и NequIP, в сравнении с данными, 

полученными с помощью ab initio квантовохимического расчета из работы [10]

Нормальное колебание Ab initio расчет (см–1) NequIP (см–1) FCgrad (см–1)

1 940 940 917

2 969 974 961

3 1074 1070 1080

4 1174 1174 1161

5 1369 1374 1355

6 1473 1477 1451

7 1612 1610 1636

8 1790 1791 1785

9 3223 3229 3224

10 3357 3361 3376

11 3550 3550 3546

12 3663 3667 3671
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