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В различных областях, и особенно в экоа-
налитике и геохимии, для определения ультра-
малого количества рассеянных элементов (Ag, 
Bi, Cd и др.) в объектах окружающей среды и 
геологических образцах часто применяют элек-
тротермический атомно-абсорбционный (АА) 
анализ, в том числе твердых проб (порошков, 
суспензий). В этом случае, в отличие от аль-
тернативного варианта с полным растворением 
образцов, снижается возможность загрязнения 
образцов при контакте с посудой, реагентами, 
уменьшаются потери элементов, особенно лег-
колетучих, на стадии разложения. При раство-
рении образцов неизбежно их разбавление, что 
снижает чувствительность анализа. Преиму-
щества очевидны, поэтому продолжается раз-
работка способов прямого АА-анализа твердых 

образцов и концентратов вод, помещаемых в 
графитовые электротермические атомизаторы 
(кюветы, печи, тигли, стержни и др.) и применя-
емых для одноэлементных и многоэлементных 
определений [1–14]. При использовании атоми-
заторов твердых образцов непросто бороться с 
неизбежными неселективными и матричными 
помехами. Для уменьшения влияния состава 
используют разные подходы. Давно известным 
и эффективным [15] является способ предвари-
тельного селективного фракционного испаре-
ния образца с конденсацией паров на вспомога-
тельной поверхности-приемнике для последую-
щего независимого атомно-эмиссионного (АЭ) 
и АА-анализа термомодифицированной матри-
цы-конденсата, т.е. проведение двухстадийного 
цикла [5, 8, 16–22]. Этот способ применяют в 
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усовершенствованных моделях атомизаторов 
разных типов. В исследованиях предпочтита-
ют использовать тигельные конструкции-ато-
мизаторы с поперечным нагревом, имеющие 
вертикально расположенные зоны испарения, 
конденсации и атомизации. Эти атомизаторы 
заведомо проигрывают в чувствительности по 
сравнению с горизонтально расположенными 
трубчатыми печами. Однако в таких атомизато-
рах достаточно просто экспериментально вы-
бирать варианты термического разложения и 
испарения-конденсации для уменьшения помех 
с учетом матричного состава органоминераль-
ных образцов массой 10 мг и более при опре-
делении элементов на уровне ниже кларковых 
значений [8, 13, 14].

Существенная проблема состоит в том, 
что возможность определения следовых ко-
личеств элементов затруднена, если стадия 

термического разложения и испарения об-
разца, размещенного «кучкой» на дне тигля, 
характеризовалась интенсивным испарением 
основы, выбросом крупных и мелких частиц 
и увеличением неселективных помех в анали-
тической зоне (общий недостаток атомизато-
ров, использующих фракционную конденса-
цию). Весьма простой подход для уменьше-
ния негативных эффектов может заключаться 
в изменении конструкции тигельной зоны ис-
парения и особенностей размещения образца 
в этой зоне, влияющих на условия термиче-
ского разложения и испарения органических 
и минеральных компонентов.

В настоящем сообщении предложена кон-
струкция тигельного атомизатора с ячейками-
каналами, испытанная при определении эле-
ментов в порошковых образцах концентратов и 
взвесей природных вод.

Рис. 1. Графитовый тигельный электротермический атомизатор твердых образцов с зонами 
испарения, конденсации и атомизации: 1 – тигель (зона испарения), 2 – контейнер, 3 – ячейки-
каналы контейнера с порошковым образцом, 4 – цилиндрический блок (зона конденсации), 5 – 
конденсат, 6 – цилиндрический блок (зона атомизации), 7 – просвечиваемое отверстие (аналити-
ческая зона), 8 – источник излучения, 9 – спектрометр, 10 – независимые графитовые держатели 

(электроконтакты), 11 – источник питания
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Экспериментальная часть

Оборудование. В настоящей работе, как и 
в предыдущих [8, 13, 14], использовали АА-
спектрофотометр «Сатурн-2» и эксперимен-
тальную многоканальную АА-установку с мо-
дификациями блока атомизации, рассмотрен-
ного в [22]. Между графитовыми сменными 
охлаждаемыми электроконтактами блока по-
мещали тигельный атомизатор лабораторного 
изготовления типа «тигель-цилиндр-цилиндр» 
(рис. 1, 2). Тигель изготовлен в двух модифи-
кациях (монолитная и разборная) и снабжен 
дополнительным графитовым блоком-контей-
нером, имеющим сквозные вертикальные ячей-
ки-каналы (до 30) малого диаметра (в пределах 
0,2–1,2 мм). Внутренний диаметр тигля и ци-
линдров составлял 5–8 мм. Во втором цилиндре 
расположены конусная зона и просвечиваемые 
отверстия диаметром 2,5–4 мм. Высота блоков 
составляла ≤15 мм, а высота контейнера с кана-
лами была ≤12 мм (рис 1, 2). При определении 
элементов в образцах использовали контейнер 
высотой 8–10 мм с ячейками-каналами диаме-
тром 0,3–0,8 мм. Все блоки атомизатора изго-
товлены из мелкозернистого газопроницаемого 
графита типа МПГ, легко поддающегося обра-
ботке [23]. Другие марки графитовых материа-
лов не использовали. Внутренние поверхности 
блоков (кроме контейнера) предпочтительно 
применять с пиролитическим покрытием для 
уменьшения диффузионных потерь. Режим на-
грева регулировали с использованием серий-
ных блоков питания (БП-26) и блоков управле-
ния (БУ-26). Источниками излучения служили 

лампы с полым катодом (ЛСП-1,2) или высоко-
частотные шариковые лампы (ВСБ-2). Много-
канальную экспериментальную АА-установку 
(несовершенную с точки зрения сегодняшнего 
дня) неоднократно применяли и ранее [14, 22], а 
в настоящей работе использовали для одновре-
менного определения трех элементов в уникаль-
ных образцах малой массы.

Образцы. Экспериментальные работы прове-
дены с коллекционными образцами концентратов 
(ДЭТАТА-сорбент + взвесь) и взвесей, получен-
ными для оценки общего содержания раство-
ренных и взвешенных форм элементов в речной 
и морской воде, а также отдельно взвешенных 
форм, что важно для целей геохимии и экологии 
[13, 14]. В графитовый тигель, фиксированный 
в гнезде подложки из оргстекла, с помощью не-
металлического пинцета помещали контейнер с 
ячейками-каналами и дозировали общую массу 
(2–5 мг) порошкового образца с частицами ме-
нее 0,1 мм, которая разделялась и распределя-
лась на отдельные малые дозы в каналах кон-
тейнера. При этом использовали прием встря-
хивания тигля с контейнером для идентичности 
распределения. Затем проводили сборку общей 
конструкции атомизатора.

Определение элементов. На первой стадии 
осуществляли термическое разложение, озоле-
ние и фракционное испарение порошкового об-
разца, размещенного в ячейках-каналах контей-
нера при постепенном увеличении температуры 
до 1700–2000 °С за 20–60 с. На второй стадии 
проводили импульсный нагрев (4–8 с) цилиндра 

Рис. 2. Модификация графитового тигля с ячейками-каналами: 
1 – разборная модель графитового тигля; 2 – многоканальный 
контейнер; 3 – ячейки-каналы контейнера с порошковым образ-

цом; 12 – основание; 13 – цилиндр
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с конденсатом. С некоторым опережением про-
водили нагрев второго цилиндра с аналитиче-
ской зоной до температуры 1600–1900 °С при 
выдерживании нагрева тигля. Использовали 
амплитудный способ регистрации и измеряли 
высоту сигнала – пика (Ag 328,1 нм; Bi 306,8 
нм; Cd 228,8 нм; Tl 276,8 нм). В качестве об-
разцов сравнения применяли другие коллекци-
онные образцы близкого макросостава, в кото-
рых элементы были определены с применением 
нескольких методик, в том числе сорбционным 
АА-методом с разложением твердых фаз, а так-
же способом добавок при введении растворов с 
известным содержанием элементов в порошко-
вые образцы [2, 13, 14]. 

Результаты и их обсуждение

Простые и известные модели графитового 
тигельного атомизатора с поперечным нагревом 
впервые были использованы для фракционного 
испарения твердых образцов, конденсации па-
ров на противоэлектроде и последующего ана-
лиза конденсата в АЭ-методе [15]. Применение 
тиглей в двухстадийном цикле оказалось пер-
спективным и в АА-анализе образцов сложного 
состава [8, 14, 19, 22]. Для более эффективного 
уменьшения влияния состава на базе тигля кон-
струировали новые модели атомизаторов твер-
дых образцов с зонами испарения, конденсации 
и атомизации [8, 13, 14]. Графитовый тигель 

(зона испарения) был «достроен» вертикально 
расположенными графитовыми блоками с зона-
ми конденсации и атомизации. Таким образом, 
были расширены функции атомизаторов в ана-
литическом цикле, показана возможность одно-
временной конденсации паров образца в двух 
независимых зонах (нагретой и ненагретой) 
или последовательного низко- и высокотемпе-
ратурного испарения матриц и получения двух 
конденсатов, которые анализировали в моделях 
с двумя зонами испарения и общей аналитиче-
ской зоной [8, 13]. Однако использование таких 
более продолжительных процедур не всегда по-
зволяло решать задачи по определению следов 
элементов в образцах, содержащих литогенные, 
биогенные, хемогенно-гидрогенные компонен-
ты (концентраты и взвеси природных вод, почвы, 
донные осадки, горные породы и др.). При на-
гревании и испарении образцов массой до 5 мг и 
более, помещенных на дно тигля, часто наблюда-
ли бурные взрывные процессы термического раз-
ложения органических и минеральных фаз, вза-
имодействие продуктов разложения, выделение 
газов и форсированный выброс неиспарившихся 
частиц в зону конденсации (нередко в начальной 
стадии нагревания), т.е. не достигалось необхо-
димой термической модификации компонентов и 
упрощения состава конденсата. 

Постоянно возникал вопрос о необходимо-
сти уменьшения интенсивности этих эффектов, 

Рис. 3. Сигналы абсорбции, полученные при определении серебра (6,3∙10–7 мг) в концентрате морской воды 
(3 мг), содержащем органические и минеральные частицы: 1 – аналитический сигнал, а – тигель обычного 
типа, б – тигель с 10 и 20 ячейками-каналами диаметром 0,6 мм, в – тигель с 10 и 20 ячейками-каналами 

диаметром 0,3 мм
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в частности, за счет изменения конструкции зон 
атомизатора, особенности размещения образца 
и условий испарения. Попытки испарять слож-
ные летучие матрицы из полости тигля, закры-
той пористой графитовой диафрагмой, приводи-
ли к изменениям структуры графита и условий 
фильтрации паров, плохой воспроизводимости 
и даже самой возможности выделения сигнала. 
Задача упрощается, если учесть известные спо-
собы по пробоподготовке объектов окружаю-
щей среды и геологических образцов к элемент-
ному физико-химическому анализу, в том числе  
АА-анализу, обеспечивающие гомогенизацию и 
измельчение до частиц менее 0,1 мм (0,05–0,08) 
[24, 25]. Поэтому в экспериментах были испыта-
ны тигли с измененной конфигурацией рабочей 
зоны испарения, влияющей на распределение и 
условия испарения дозируемой навески образца 
с частицами менее 0,1 мм.

Новизна и суть предлагаемого конструктив-
ного решения модели атомизатора заключают-
ся в следующем. Зону испарения в тигле можно 
дополнить графитовым блоком-контейнером из 
пористого газопроницаемого графита для фор-
мирования геометрических особенностей этой 
зоны с ячейками-каналами малого диаметра, 
разделяющими, подобно ситу, навеску порошко-
вого образца на отдельные, изолированные друг 
от друга стенками каналов микрообразцы. Та-
кое решение обеспечивает размещение в ячей-
ках-каналах, которые являются независимыми 
зонами испарения, малых доз образца, причем 
без уменьшения общей анализируемой массы, 
т.е. представительности пробы (рис. 1, 2).

Особенности конструкции атомизатора. 
Модель тигельного атомизатора с ячейками-ка-
налами выполнена на базе ранее использован-
ных конструкций [8, 13, 14]. Атомизатор состо-
ял из трех графитовых цилиндрических блоков, 
помещенных между независимыми электрокон-

тактами, которые формируют зоны испарения, 
конденсации и атомизации (рис. 1). Первый 
блок – графитовый тигель с установленным в 
нем графитовым контейнером (рис. 2). Тигель 
может быть монолитным или представлять раз-
борную конструкцию из сменного графитового 
основания, на которое устанавливается полый 
цилиндр. Разборная конструкция упрощает за-
мену использованного контейнера без суще-
ственной разборки всего устройства. Контейнер 
имеет цилиндрическую форму для размещения 
и разделения порошкового образца, в нем вы-
полнены вертикальные сквозные отверстия, 
т.е. ячейки-каналы малого диаметра. Второй 
цилиндрический блок расположен над ти-
глем с небольшим теплоизолирующим зазо-
ром (0,5–2 мм). Третий цилиндрический блок 
установлен на торцевую поверхность второго 
блока и формирует зону атомизации с конусной 
внутренней поверхностью, переходящей в про-
свечиваемый аналитический объем в цилиндри-
ческом отверстии с возможностью локализации 
паров. Атомизатор обеспечивает последова-
тельное применение первой и второй стадий 
аналитического цикла.

Результаты эксперимента

Атомизатор использован для определения 
Ag, Bi, Cd, Tl в коллекционных органомине-
ральных образцах концентратов и взвесей 
речных и морских вод [13]. Выбор элементов 
обусловлен задачами геохимических и эколо-
гических исследований, а не их летучестью. 
Масса этих образцов при существующих ме-
тодах пробоотбора и пробоподготовки всегда 
ограничена, и возможности других тигельных 
атомизаторов часто не могут быть использо-
ваны. На основании данных предыдущих ра-
бот [8, 13, 14] выбраны образцы, характери-
зующиеся высоким уровнем неселективного 

Т а б л и ц а  1

Пределы обнаружения элементов в порошковых концентратах и взвесях речных и морских вод (ppm,                      
3Sx.0 критерий, n = 3–4) 

Элемент Тигель 
с ячейками-каналами Тигель обычного типа

Ag
Cd
Tl
Bi

0,01–0,03
0,01–0,03
0,06–0,5
0,05–0,3

0,05–0,1
0,05–0,1
0,3–1,0
0,3–1,0
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поглощения и значениями отношения сигнала 
абсорбции элемента к сигналу абсорбции не-
селективного поглощения <<1 (всего 17 образ-
цов). Для улучшения метрологических харак-
теристик определения элементов необходимо 
уменьшать неселективные помехи, в основном 
за счет поступления частиц в аналитическую 
зону с газовой фазой образца. Поэтому были 
получены данные о значениях сигнала абсорб-
ции неселективного поглощения при определе-
нии элементов в порошковых образцах концен-
тратов и взвесей с применением атомизаторов 
с различной конструкцией зоны испарения. Ре-
зультаты показали, что применение тигельного 
атомизатора с контейнером в зоне испарения, 
в которой общая масса образца разделялась на 
малые дозы и распределялась в независимые 
ячейки-каналы, обеспечивает снижение уров-
ня неселективного поглощения по сравнению с 
атомизатором с навеской образца, размещенной 
на дне тигля (значения уровня неселективного 
поглощения составили <0,01–0,4 и 0,1–1,2 соот-
ветственно). 

В качестве примера на рис. 3 показана реги-
строграмма сигналов абсорбции при определе-
нии Ag в образце концентрата морской воды, 
содержащем органические и минеральные взве-
шенные частицы. Эксперимент показал, что 
возможно определение элемента в образце с 
применением контейнера с ячейками-каналами 
диаметром 0,6 и 0,3 мм. При уменьшении диа-
метра ячеек уровень неселективного поглоще-
ния уменьшается, но величина аналитическо-
го сигнала изменяется мало. Такая тенденция, 
очевидно, является следствием конструктивных 
изменений в зоне испарения. Термическое раз-
ложение, озоление и испарение разделенных 
малых количеств образца в узких каналах с рав-
ным внутренним объемом рабочих зон проис-
ходит в более близких условиях с уменьшенной 
интенсивностью выделения газообразных про-
дуктов, влияния конвекционного потока, эф-
фектов взаимодействия продуктов разложения. 
При этом пористая газопроницаемая структура 
графитовых стенок каналов обусловливает воз-
можность межканальной диффузии (фильтра-
ции) паров образца, задержку испарения, уве-
личение времени пребывания твердых частиц в 
зоне испарения и их взаимодействия с поверх-
ностью каналов. Все эти факторы приводят, ве-
роятно, к получению суммарного синергетиче-
ского эффекта и способствуют большей степени 
атомизации компонентов образца в процессе 
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диффузионно-конвекционного переноса паров 
в ячейках-каналах контейнера и снижению или 
отсутствию выброса неиспарившихся частиц. 
В результате достигаются увеличение значений 
отношения сигнал/шум в аналитической зоне и 
снижение пределов обнаружения элементов в 
образцах сложного состава (табл. 1). В табл. 2 
приведены некоторые результаты определения 
элементов в органоминеральных образцах кон-
центратов и взвесей природных вод при контро-
ле правильности с применением независимого 
сорбционного АА-метода и способа добавок. 
Эффективность применения модели атомизато-
ра следует из данных табл. 2, поскольку элемен-
ты были определены в каждом из анализируе-
мых уникальных образцов. Пределы обнаруже-

ния элементов снижены, по крайней мере, в 2–5 
раз по сравнению с использованием варианта 
анализа, в котором общая масса образца была 
традиционно размещена на дне тигля. Относи-
тельное стандартное отклонение при определе-
нии элементов вдали от предела обнаружения 
(на кларковом уровне содержаний) обычно не 
превышает 0,20, что вполне удовлетворительно 
для целей геохимии и экологии. 

В заключение отметим, что в работе пока-
зан пример решения аналитической задачи по 
определению следов элементов в органомине-
ральных образцах с применением новой моде-
ли графитового тигельного атомизатора с ячей-
ками-каналами для размещения порошкового 
образца.
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