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Аннотация. В работе представлено исследование кинетических особенностей 
жидкофазного гидрирования 1-метил-4-нитробензола (4-нитротолуола) в присут-
ствии нанесенного никелевого катализатора Ni/SiO2, модифицированного контро-
лируемым введением сульфид-ионов. Целью исследования является определение 
связи между степенью дезактивации активных центров катализатора и его катали-
тической активностью в реакции восстановления нитрогруппы. Синтезированы 
шесть катализаторов с разным содержанием никеля, физико-химические свойства 
которых были охарактеризованы с использованием методов энергодисперсион-
ного анализа, рентгенофазового анализа и низкотемпературной адсорбции азота. 
Контролируемая дезактивация осуществлялась введением различного количества 
раствора Na2S в реакционную среду. Установлено, что сульфид-ион преимуще-
ственно взаимодействует с поверхностными атомами никеля, снижая активность 
катализатора пропорционально количеству адсорбированных ионов. Эксперимен-
тально определено, что в среднем 1,5 атома серы блокируют один атом поверх-
ностного Niо. Продемонстрировано, что частичная дезактивация позволяет целе-
направленно варьировать активность и потенциально селективность катализатора 
за счет модификации его поверхности. Результаты указывают на возможность ис-
пользования дезактивации в качестве инструмента тонкой настройки каталитиче-
ских свойств в гидрогенизационных процессах.
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Одним из эффективных способов регулирова-
ния каталитической активности, селективности 
и стабильности каталитических систем является 
введение промотирующих или дезактивирующих 
добавок [1–3]. Механизм действия ядов объяс-
няется их избирательной адсорбцией на поверх-
ности катализатора и конкуренцией с исходными 
реагентами за активные центры [4]. В результате 
часть поверхности катализатора становится недо-
ступной для реактантов, что снижает его актив-
ность, но при этом может повышать устойчивость 
к внешним факторам. Примером последнего яв-
ляется процесс сульфидирования, при котором 
атомы серы образуют прочные связи с активными 
центрами [5, 6]. В работе [7] показано, что при от-
равлении никеля сероводородом ионы S2- за счет 
более высокого адсорбционного потенциала спо-
собны вытеснять даже прочносвязанные формы 
адсорбированного водорода. Кроме того, при ги-
дрировании ряда органических соединений воз-

можно дезактивирование активных центров по-
верхности катализатора [8], при этом может на-
блюдаться торможение реакции продуктами ги-
дрирования [9].

Морфология и текстурные свойства катализа-
тора (в частности, размер частиц) существенно 
влияют на число активных центров и их адсорб-
ционные свойства [10–13]. Для каждого гидриру-
емого соединения существует свой оптимальный 
размер кристаллитов никеля, определяющий ко-
личество сорбированного водорода и его энергию 
связи, а также удельную поверхность, стабиль-
ность и устойчивость катализатора [14]. При этом 
небольшое количество каталитического яда может 
повышать каталитическую активность благодаря 
увеличению удельной поверхности катализатора 
[15, 16].

Активность и селективность катализаторов 
жидкофазного гидрирования во многом связыва-
ют [15, 17, 18] с наличием различных форм адсор-
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бированного водорода, которые обладают разной 
реакционной способностью. Однако влияние этих 
форм на кинетику реакций обычно оценивается 
косвенными методами. Доказано существование 
равновесия между различными формами адсор-
бированного водорода, которое изменяется в за-
висимости от условий реакции (состав раствори-
теля или наличие каталитических ядов) [15, 17]. 
Равновесия адсорбированных форм водорода на 
поверхности различных катализаторов, в том чис-
ле нанесенных никелевых, изучены методами ад-
сорбционной калориметрии, химического обезво-
дороживания, синхронного термического анализа 
и масс-спектрометрии [19]. Совмещение данных 
адсорбционного и кинетического экспериментов 
при частичной дезактивации катализатора позво-
ляет определить константы реакционной способ-
ности различных форм водорода [20].

Таким образом, одной из важных задач характе-
ризации катализатора является определение числа 
активных центров на его поверхности. В случае 
равномерного блокирования дезактивирующим 
агентом активных центров катализатора [16, 19, 
21] можно определить число этих центров по чис-
лу адсорбировавшихся атомов каталитического 
яда. 

Цель настоящей работы – изучение влияния 
контролируемой блокировки активных центров 
(дезактивации) никелевого катализатора (Ni/SiO2) 
сульфид-ионами на кинетику жидкофазного вос-
становления 4-нитротолуола в зависимости от ко-
личества восстановленного металла.

Продуктом гидрирования 4-нитротолуола явля-
ется 4-аминотуолуол (п-толуидин) – промышлен-
но важное соединение, которое входит в состав 
ингибиторов коррозии, а также используется для 
получения различных красителей. Выбор суль-
фида натрия в качестве дезактивирующего агента 
обусловлен тем, что соединения серы являются 
наиболее распространенными каталитическими 
ядами, которые способны блокировать активные 
центры никелевых катализаторов, изменяя их ак-
тивность в реакциях гидрирования нитросоеди-
нений [21]. Оптимальными растворителями для 
большинства нитросоединений служат низшие 
спирты. В работе, исходя из производственных со-
ображений, были выбраны водные и водно-спир-
товые растворы.

Экспериментальная часть

В настоящей работе синтезированы шесть ка-
тализаторов, различающихся содержанием нике-
ля, нанесенного на силикагель, по методике [22]. 

В 15 мл водного раствора нитрата никеля с кон-
центрацией 50, 40, 30, 20, 15 и 10 мас.% вносили 
1 г силикагеля Л 5/40μ (SiO2) и проводили про-
питку при перемешивании магнитной мешалкой 
с частотой 1 Гц в течение 4 ч при температуре 30 
°С. Пропитанный силикагель отделяли от раство-
ра на фильтре Шотта, сушили при 80 °C (2 ч) и 
прокаливали при 470 °C (2–3 ч). Перед кинетиче-
скими испытаниями катализаторы восстанавли-
вали в трубчатой печи при 470 °С в токе водорода 
(скорость нагрева составляла 4 °С/мин, выдержка 
при 470 °С – 15 мин).

Элементный состав приготовленных образ-
цов определяли с помощью энергодисперсион-
ного анализа (ЭДА) на приборе NanoAnalysis 
(Oxford Instruments, Великобритания). Так как 
для синтеза катализатора использовали силика-
гель, максимум распределения размера частиц 
которого составляет 5 мкм, а глубина форми-
рования сигнала для ЭДА в случае силикагеля 
также равна ~5 мкм, полученные данные можно 
считать репрезентативными для всей гранулы 
катализатора.

Рентгенофазовый анализ (РФА) проводили 
на дифрактометре Bruker D8 Advance (CuKα-
излучение, 40 кВ, 20 мА, 2Θ = 10–90 град., ско-
рость сканирования 4 град./мин, шаг 0,01 град.). 
Фазовую идентификацию осуществляли с ис-
пользованием базы данных МИНКРИСТ. Раз-
мер кристаллитов никеля (dB, нм), дисперс-
ность (D, %), площадь активной поверхности 
(SNiо, м

2/г) рассчитывали по формулам [23, 24]:
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где Bd (2θ) – уширение рефлекса (град.), K – кон-
станта Шеррера [25], θ – положение рефлек-
са (град.), λ – рентгеновская длина волны (λ = 
0,15406 нм); σ – концентрация атомов металла на 
поверхности кристаллита (1,54·1015/см2 для Ni 

(5)
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[26]); ω – массовая доля никеля, нанесенного 
на носитель (%), ρ – плотность металла (8,9 г/
см3 для Ni); M – молярная масса (для никеля 
58,7 г/моль); Na = 6,022 140 76.1023 моль−1; D0 
– дисперсность с учетом степени восстановле-
ния (%), x – доля восстановленного металла, 
nNiо – число молей восстановленного никеля на 
поверхности катализатора.

Долю восстановленного металла (x, %) опре-
деляли с помощью растворения в соляной кис-
лоте по количеству выделившегося водорода.

Удельную поверхность катализаторов изме-
ряли методом низкотемпературной адсорбции 
азота (БЭТ) с использованием комплекса Sorbi 
MS (Россия, Новосибирск).

Контролируемую дезактивацию катализато-
ров проводили по методике [27]. Перед кинети-
ческими опытами в реактор добавляли 0,1–0,3 
мл 0,025 М раствора Na2S на 100 мл жидкой 
фазы. Водородный показатель раствора соответ-
ствовал показателю реакционной среды. Про-
цесс дезактивации осуществляли под атмосфе-
рой водорода при перемешивании жидкой фазы.

Количество вводимого сульфида выбирали 
так, чтобы снизить активность катализатора 
незначительно, но больше, чем составляет по-

грешность кинетического эксперимента (10–
15%). Таким образом, для каждого катализатора 
было получено по четыре образца, обработан-
ных разным количеством сульфида. В качестве 
модельного соединения использовали 4-нитро-
толуол, восстановление которого газообразным 
водородом проходит без образования побочных 
продуктов [28, 29]. 

Гидрирование проводили статическим мето-
дом в герметизированной системе с контролиру-
емой подачей газообразного водорода. Реактор 
объемом 400 мл термостатировали при 30 °С. Ре-
акционную смесь перемешивали со скоростью 
вращения мешалки 3600 об/мин, что позволяло 
исключить влияние внешнего массопереноса на 
результаты эксперимента. В процессе реак-
ции измеряли объем поглощенного водорода. 
В работе испытаны два растворителя. В каче-
стве первого использовали дистиллированную 
воду, в качестве второго – смесь дистиллиро-
ванной воды и 2-пропанола в соотношении 1:1 
по объему.

Для оценки каталитической активности ис-
пользовали скорость реакции при низкой степени 
превращения, пока не успели накопиться проме-
жуточные вещества и еще не оказывают действия 

Т а б л и ц а  1

Физико-химические свойства катализаторов

Номер 
катализатора

Масса Ni (NO3)2 на 
1 г SiO2, г

ω (Ni), % Sуд., м
2/г x, % d, нм D, % D0, % SNiо, м

2/г

I 6,7 27,59 264,0±0,7 39,9 17,7 5,72 2,28 4,19

II 5,3 20,50 296,3±0,9 43,9 15,5 6,53 2,87 3,91

III 4,2 18,75 317,6±0,5 37,3 10,0 10,12 3,77 4,73

IV 5,5 10,46 338,4±0,5 47,8 9,8 10,33 4,94 3,45

V 1,8 9,09 362,0±0,9 44,0 9,5 10,65 4,69 2,84

VI 1,0 6,07 364,0±0,8 9,9 9,1 11,12 1,10 0,45

Т а б л и ц а  2

Количество Na2S, необходимое для полной дезактивации катализатора, ммоль/г

Номер катализатора*

Растворитель

Количество Na2S, ммоль/г

I II III IV V VI

вода 0,564 0,135 0,134 0,130 0,111 0,078

2-пропанол : вода 0,470 0,230 0,192 0,159 0,150 0,101

* Номера катализаторов совпадают с номерами в табл. 1.
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побочные процессы. В этом случае скорость ре-
акции определяется исключительно реакционной 
способностью адсорбированного водорода. 

Основная часть

Основные физико-химические характеристи-
ки исследованных образцов никелевых катализа-

торов, нанесенных на SiO2, приведены в табл. 1. 
Анализируя представленные данные, можно от-
метить, что увеличение содержания никеля со-
провождается снижением удельной поверхности 
катализатора, этот факт можно объяснить блоки-
рованием пор носителя. Снижение удельной по-
верхности катализатора, в свою очередь, может 

Гидрирование 4-нитротолуола на Ni/SiO2: а – исходные кинетические данные по объему поглощения 
водорода за время реакции; б – зависимость скорости поглощения водорода от степени конверсии; в – 
активность катализатора в ходе гидрирования 4-нитротолуола на Ni/SiO2 (№ II в табл. 1) в растворителе 
(вода); г – частота оборотов (TOF) для всех опытов в двух растворителях в зависимости от введенного 
количества сульфида натрия, нормированного на количество поверхностного никеля (1 – свежий ка-
тализатор; 2 – добавлено Na2S, мл: 0,2; 3 – 0,4; 4 – 0,6; 5 – 0,8; 6 – все опыты). Во всех случаях масса 
катализатора составляла 2,5 г, масса введенного 4-нитротолуола – 0,4 г, температура проведения опыта 

303 К
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обусловить снижение активности, отнесенной к 
массе никеля. Однако при снижении содержа-
ния никеля наблюдается уменьшение размеров 
кристаллитов и рост дисперсности, что может 
снижать стабильность частиц и уменьшать ко-
личество структурного водорода, который мо-
жет храниться в растворенном виде в кристал-
лите. При этом площадь активной поверхности 
(SNiº) изменяется немонотонно. Это обусловлено 
тем, что площадь активной поверхности опре-
деляется произведением дисперсности и содер-
жанием металла, которые антибатны друг другу.

Для оценки влияния физико-химических ха-
рактеристик катализатора на его активность и 
устойчивость к отравлению сульфид-ионами 
были проведены кинетические эксперименты 
по восстановлению 4-нитротолуола в различ-
ных растворителях (вода и 2-пропанол : вода) 
в условиях частичной контролируемой дезакти-
вации (рисунок). На рисунке, а в качестве при-
мера представлены исходные данные по объему 
поглощенного водорода за прошедшее время 
реакции гидрирования 4-нитротолуола на Ni/
SiO2 (II в табл. 1). На основании полученных 
экспериментальных данных были рассчитаны 
значения скорости гидрирования в зависимости 
от степени конверсии (см. пример для образца 
II на рисунке, б). По этим данным были рассчи-
таны величины активности катализаторов (см. 
пример для образца II на рисунке, в).

Полученные кинетические закономерности 
для реакции гидрирования 4-нитротолуола мож-
но объяснить с позиций изменения скорости 
отдельных стадий превращения нитрогруппы 
в стехиометрическом механизме реакций жид-
кофазного гидрирования замещенных нитро-
бензолов. Изучение влияния растворителя на 
кинетические закономерности гидрирования за-
мещенных нитробензолов проводили в ряде ис-
следований [30]. Показано, что в нейтральных 
средах гидрирование нитрогруппы протекает 
преимущественно по гидрогенизационному на-
правлению, без накопления в системе значи-
тельного количества продуктов неполного вос-
становления нитрогруппы, а в щелочных повы-
шается вклад конденсационного направления, 
при этом в системе накапливаются продукты 
неполного восстановления нитрогруппы и реак-
ций гомогенной гидрогенизации нитрогруппы – 
азокси- и азосоединения. Полупродукты могут 
оказывать тормозящее действие на катализатор, 
частично дезактивируя его. Этим, вероятно, 

можно объяснить нелинейность изменения ак-
тивности на кинетических кривых.

Построение графика зависимости актив-
ности катализатора от введенного количества 
каталитического яда (рисунок, в) и эксраполи-
рование линии тренда позволяет понять, какое 
количество сульфида приведет к полной потере 
катализатором своей активности. Полученные 
данные для всех катализаторов и двух раство-
рителей приведены в табл. 2. 

Ключевым фактором, как показывает анализ 
полученных данных, является количество ни-
келя, что свидетельствует о преимущественной 
адсорбции сульфид-ионов именно на активных 
центрах Ni. Это подтверждено эксперименталь-
но и согласуется с литературными источниками 
[16, 20, 27, 31]. График, построенный в коорди-
натах TOF – f (nкат.яд./nNiо), позволил определить, 
что в среднем 1,5 атома серы блокируют один 
поверхностный атом Niо.

В работе [15] показана применимость мето-
дики оценки характера дезактивации катализа-
тора, предложенной К.Х. Бартоломью [21] для 
процессов жидкофазного гидрирования по от-
клонению измеренных значений от линии трен-
да (рисунок, в). Во всех случаях наблюдалось 
неселективная дезактивация.

Можно утверждать, что сульфид натрия по-
зволяет модифицировать поверхность катали-
затора. Экспериментально доказано, что целе-
направленная частичная дезактивация катали-
затора ионами серы изменяет его активность в 
реакциях жидкофазного гидрирования соедине-
ний, содержащих в своем составе нитрогруппу. 
Это приводит не только к дифференцированию 
скоростей, что имеет фундаментальное значе-
ние для выяснения реакционной способности 
адсорбированного водорода, различающегося 
по энергии адсорбции к никелю, но и позволя-
ет варьировать восприимчивость катализатора к 
водороду, тем самым позволяя повысить селек-
тивность катализатора.

Таким образом, изучена активность нанесен-
ного никелевого катализатора Ni/SiO2 в реакции 
восстановления нитросоединений в водной и 
водно-спиртовой среде в условиях частичной 
контролируемой дезактивации сульфидом на-
трия. Экспериментально определено, что суль-
фид блокирует поверхностные атомы никеля 
в соотношении 3 атома S2– к 2 атомам Niо, что 
подтверждает селективную адсорбцию яда на 
активных центрах.
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