ChemNet
 

С. Т. Жуков Химия-10/11класс

18. Окислительно-восстановительные реакции (продолжение 2)


18.9. ОВР с участием органических веществ

В ОВР органических веществ с неорганическими органические вещества чаще всего являются восстановителями. Так, при сгорании органического вещества в избытке кислорода всегда образуется углекислый газ и вода. Сложнее протекают реакции при использовании менее активных окислителей. В этом параграфе рассмотрены только реакции представителей важнейших классов органических веществ с некоторыми неорганическими окислителями.

Алкены. При мягком окислении алкены превращаются в гликоли (двухатомные спирты). Атомы-восстановители в этих реакциях – атомы углерода, связанные двойной связью.

Реакция с раствором перманганата калия протекает в нейтральной или слабо щелочной среде следующим образом:

C2H4 + 2KMnO4 + 2H2O CH2OH–CH2OH + 2MnO2 + 2KOH (охлаждение)

В более жестких условиях окисление приводит к разрыву углеродной цепи по двойной связи и образованию двух кислот (в сильно щелочной среде – двух солей) или кислоты и диоксида углерода (в сильно щелочной среде – соли и карбоната):

1) 5CH3CH=CHCH2CH3 + 8KMnO4 + 12H2SO4 5CH3COOH + 5C2H5COOH + 8MnSO4 + 4K2SO4 + 17H2O (нагревание)

2) 5CH3CH=CH2 + 10KMnO4 + 15H2SO4 5CH3COOH + 5CO2 + 10MnSO4 + 5K2SO4 + 20H2O (нагревание)

3) CH3CH=CHCH2CH3 + 6KMnO4 + 10KOH CH3COOK + C2H5COOK + 6H2O + 6K2MnO4 (нагревание)

4) CH3CH=CH2 + 10KMnO4 + 13KOH CH3COOK + K2CO3 + 8H2O + 10K2MnO4 (нагревание)

Дихромат калия в сернокислотной среде окисляет алкены аналогично реакциям 1 и 2.

Алкины. Алкины начинают окисляются в несколько более жестких условиях, чем алкены, поэтому они обычно окисляются с разрывом углеродной цепи по тройной связи. Как и в случае алканов, атомы-восстановители здесь – атомы углерода, связанные в данном случае тройной связью. В результате реакций образуются кислоты и диоксид углерода. Окисление может быть проведено перманганатом или дихроматом калия в кислотной среде, например:

5CH3C 3.gif (46 bytes) CH + 8KMnO4 + 12H2SO4 5CH3COOH + 5CO2 + 8MnSO4 + 4K2SO4 + 12H2O (нагревание)

Иногда удается выделить промежуточные продукты окисления. В зависимости от положения тройной связи в молекуле это или дикетоны (R1–CO–CO–R2), или альдокетоны (R–CO–CHO).

Ацетилен может быть окислен перманганатом калия в слабощелочной среде до оксалата калия:

3C2H2 + 8KMnO4 = 3K2C2O4 +2H2O + 8MnO2 + 2KOH

В кислотной среде окисление идет до углекислого газа:

C2H2 + 2KMnO4 +3H2SO4 =2CO2 + 2MnSO4 + 4H2O + K2SO4

Гомологи бензола. Гомологи бензола могут быть окислены раствором перманганата калия в нейтральной среде до бензоата калия:

C6H5CH3 +2KMnO4 = C6H5COOK + 2MnO2 + KOH + H2O (при кипячении)

C6H5CH2CH3 + 4KMnO4 = C6H5COOK + K2CO3 + 2H2O + 4MnO2 + KOH (при нагревании)

Окисление этих веществ дихроматом или перманганатом калия в кислотной среде приводит к образованию бензойной кислоты.

Спирты. Непосредственным продуктом окисления первичных спиртов являются альдегиды, а вторичных – кетоны.

Образующиеся при окислении спиртов альдегиды легко окисляются до кислот, поэтому альдегиды из первичных спиртов получают окислением дихроматом калия в кислотной среде при температуре кипения альдегида. Испаряясь, альдегиды не успевают окислиться.

3C2H5OH + K2Cr2O7 + 4H2SO4 = 3CH3CHOuarrow.gif (63 bytes) + K2SO4 + Cr2(SO4)3 + 7H2O (нагревание)

С избытком окислителя (KMnO4, K2Cr2O7) в любой среде первичные спирты окисляются до карбоновых кислот или их солей, а вторичные – до кетонов. Третичные спирты в этих условиях не окисляются, а метиловый спирт окисляется до углекислого газа. Все реакции идут при нагревании.

Двухатомный спирт, этиленгликоль HOCH2–CH2OH, при нагревании в кислотной среде с раствором KMnO4 или K2Cr2O7 легко окисляется до углекислого газа и воды, но иногда удается выделить и промежуточные продукты (HOCH2–COOH, HOOC–COOH и др.).

Альдегиды. Альдегиды – довольно сильные восстановители, и поэтому легко окисляются различными окислителями, например: KMnO4, K2Cr2O7, [Ag(NH3)2]OH. Все реакции идут при нагревании:

3CH3CHO + 2KMnO4 = CH3COOH + 2CH3COOK + 2MnO2 + H2O
3CH3CHO + K2Cr2O7 + 4H2SO4 = 3CH3COOH + Cr2(SO4)3 + 7H2O
CH3CHO + 2[Ag(NH3)2]OH = CH3COONH4 + 2Ag + H2O + 3NH3

Формальдегид с избытком окислителя окисляется до углекислого газа.

Из определений понятий " атом-окислитель" и " атом-восстановитель" следует, что только окислительными свойствами обладают атомы в высшей степени окисления. Наоборот, только восстановительными свойствами обладают атомы в низшей степени окисления. Атомы, находящиеся в промежуточных степенях окисления, могут быть как окислителями, так и восстановителями.

Вместе с тем, основываясь только на степени окисления, невозможно однозначно оценить окислительно-восстановительные свойства веществ. В качестве примера рассмотрим соединения элементов VA группы. Соединения азота(V) и сурьмы(V) являются более или менее сильными окислителями, соединения висмута(V) – очень сильные окислители, а соединения фосфора(V) окислительными свойствами практически не обладают. В этом и других подобных случаях имеет значение, насколько данная степень окисления характерна для данного элемента, то есть, насколько устойчивы соединения, содержащие атомы данного элемента в этой степени окисления.

Любая ОВР протекает в направлении образования более слабого окислителя и более слабого восстановителя. В общем случае возможность протекания какой-либо ОВР, как и любой другой реакции, может быть определена по знаку изменения энергии Гиббса. Кроме того, для количественной оценки окислительно-восстановительной активности веществ используют электрохимические характеристики окислителей и восстановителей (стандартные потенциалы окислительно-восстановительных пар). Основываясь на этих количественных характеристиках, можно построить ряды окислительно-восстановительной активности различных веществ. Известный вам ряд напряжений металлов построен именно таким образом. Этот ряд дает возможность сравнивать восстановительные свойства металлов в водных растворах, находящихся в стандартных условиях (с = 1 моль/л, Т = 298,15 К), а также окислительные свойства простых аквакатионов. Если в верхней строке этого ряда поместить ионы (окислители), а в нижней – атомы металлов (восстановители), то левая часть этого ряда (до водорода) будет выглядеть так:

Li

K

Cs

Ba2

Rb

Sr2

Ca2

Na

Mg2

Be2

Al3

Mn2

Zn2

Cr3

Fe2

Co2

Ni2

Sn2

Pb2

H3O

Li

K

Cs

Ba

Rb

Sr

Ca

Na

Mg

Be

Al

Mn

Zn

Cr

Fe

Co

Ni

Sn

Pb

H2

В этом ряду окислительные свойства ионов (верхняя строка) усиливаются слева направо, а восстановительные свойства металлов (нижняя строка), наоборот, справа налево.

Учитывая различия в окислительно-восстановительной активности в разных средах, можно построить аналогичные ряды и для окислителей. Так, для реакций в кислотной среде (pH = 0) получается " продолжение" ряда активности металлов в направлении усиления окислительных свойств

H3O

Cu2

I2

O2

Fe3

Ag

HNO2

Br2

O2

MnO2

Cr2O72

Cl2

PbO2

MnO4

H2O2

O3

CaO2

Na2O2

F2

H2

Cu

I

H2O2

Fe2

Ag

NO

Br

H2O

Mn2

Cr3

Cl

Pb2

Mn2

H2O

H2O

H2O

H2O

HF

Как и в ряду активности металлов, в этом ряду окислительные свойства окислителей (верхняя строка) усиливаются слева направо. Но, используя этот ряд, сравнивать восстановительную активность восстановителей (нижняя строка) можно только в том случае, когда их окисленная форма совпадает с приведенной в верхней строке; в этом случае она усиливается справа налево.

Рассмотрим несколько примеров. Чтобы узнать, возможна ли данная ОВР будем использовать общее правило, определяющее направление протекания окислительно-восстановительных реакций (реакции протекают в направлении образования более слабого окислителя и более слабого восстановителя).

1. Можно ли магнием восстановить кобальт из раствора CoSO4?
Магний более сильный восстановитель, чем кобальт, и ионы Co2 более сильные окислители, чем ионы Mg2, следовательно, можно.
2. Можно ли раствором FeCl3 окислить медь до CuCl2 в кислотной среде?
Так как ионы Fe3B более сильные окислители, чем ионы Cu2, а медь более сильный восстановитель, чем ионы Fe2, то можно.
3. Можно ли, продувая кислород через подкисленный соляной кислотой раствор FeCl2, получить раствор FeCl3?
Казалось бы нет, так как в нашем ряду кислород стоит левее ионов Fe3 и является более слабым окислителем, чем эти ионы. Но в водном растворе кислород практически никогда не восстанавливается до H2O2, в этом случае он восстанавливается до H2O и занимает место между Br2 и MnO2. Следовательно такая реакция возможна, правда, протекает она довольно медленно (почему?).
4. Можно ли в кислотной среде перманганатом калия окислить H2O2?
В этом случае H2O2 восстановитель и восстановитель более сильный, чем ионы Mn2B, а ионы MnO4 окислители более сильные, чем образующийся из пероксида кислород. Следовательно, можно.

Аналогичный ряд, построенный для ОВР в щелочной среде, выглядит следующим образом:

SO42

H2O

SO32

CrO42

NO3

NO2

Ag2O

O2

I2

MnO4

HO2

Br2

Na2O2

O3

Cl2

F2

SO32

H2

S

[Cr(OH)6]2

NO2

N2O

Ag

OH

I

MnO42

OH

Br

OH

OH + O2

Cl

F

В отличие от " кислотного" ряда, этот ряд нельзя использовать совместно с рядом активности металлов.

Image228a.gif (133 bytes) Метод электронно-ионного баланса (метод полуреакций), межмолекулярные ОВР, внутримолекулярные ОВР, ОВР дисмутации (диспропорционирования, самоокисления-самовосстановления), ОВР конмутации, пассивация.

Image228b.gif (129 bytes)

  1. Используя метод электронно-ионого баланса, составьте уравнения реакций, протекающих при добавлении к подкисленному серной кислотой раствору перманганата калия раствора а) H2S {S, точнее, S8}; б) KHS; в) K2S; г) H2SO3; д) KHSO3; е) K2SO3; ё) HNO2; ж) KNO2; и) KI {I2}; к) FeSO4; л) C2H5OH {CH3COOH}; м) CH3CHO; н) (COOH)2 {CO2}; п) K2C2O4. Здесь и далее в необходимых случаях в фигурных скобках указаны продукты окисления.
  2. Составьте уравнения реакций, протекающих при пропускании следующих газов через подкисленный серной кислотой раствор перманганата калия: а) C2H2 {CO2}; б) C2H4 {CO2}; в) C3H4 (пропин) {CO2 и CH3COOH}; г) C3H6; д) CH4; е) HCHO.
  3. То же, но раствор восстановителя добавлен к нейтральному раствору перманганата калия: а) KHS; б) K2S; в) KHSO3; г) K2SO3; д) KNO2; е) KI.
  4. То же, но в раствор перманганата калия предварительно добавлен раствор гидроксида калия: а) K2S {K2SO4}; б) K2SO3; в) KNO2; г) KI {KIO3}.
  5. Составьте уравнения следующих реакций , протекающих в растворе: а) KMnO4 + H2S ...;
    б) KMnO4 + HCl ...;
    в) KMnO4 + HBr ...;
    г) KMnO4 + HI ...
  6. Составьте следующие уравнения ОВР диоксида марганца:
    а) MnO2 + H2SO4 + H2S ;
    б) MnO2 + H2SO4 + KHS ;
    в) MnO2 + H2SO4 + K2S ;

    г) MnO2 + H2SO4 + H2SO3 ;
    д) MnO2 + H2SO4 + KHSO3 ;
    е) MnO2 + H2SO4 + K2SO3 ;

    ж) MnO2 + H2SO4 + HNO2 ;
    и) MnO2 + H2SO4 + KNO2 ;
    к) MnO2 + H2SO4 + KI ;
    л) MnO2 + H2SO4 + FeSO4 ;
    м) MnO2 + HCl ;
    н) MnO2 + HBr ;
    п) MnO2 + HI .
  7.  

  8. К подкисленному серной кислотой раствору дихромата калия добавлены растворы следующих веществ: а) KHS; б) K2S; в) HNO2; г) KNO2; д) KI; е) FeSO4; ж) CH3CH2CHO; и) H2SO3; к) KHSO3; л) K2SO3. Составьте уравнения протекающих реакций.
  9. То же, но через раствор пропущены следующие газы: а) H2S; б) SO2.
  10. К раствору хромата калия, содержащему гидроксид калия, добавлены растворы а) K2S {K2SO4}; б) K2SO3; в) KNO2; г) KI {KIO3}. Составьте уравнения протекающих реакций.
  11. К раствору хлорида хрома(III) прибавили раствор гидроксида калия до растворения первоначально образовавшегося осадка, а затем – бромную воду. Составьте уравнения протекающих реакций.
  12. То же, но на последнем этапе был добавлен раствор пероксодисульфата калия K2S2O8, восстановивегося в процессе реакции до сульфата.
  13. Составьте уравнения реакций, протекающих в растворе:
  14. а) CrCl2 + FeCl3 ; б) CrSO4 + FeCl3 ; в) CrSO4 + H2SO4 + O2 ;

    г) CrSO4 + H2SO4 + MnO2 ; д) CrSO4 + H2SO4 + KMnO4 .

  15. Составьте уравнения реакций, протекающих между твердым триоксидом хрома и следующими веществами: а) C; б) CO; в) S {SO2}; г) H2S; д) NH3; е) C2H5OH {CO2 и H2O}; ж) CH3COCH3.
  16. Составьте уравнения реакций, протекающих при добавлении в концентрированную азотную кислоту следующих веществ: а) S {H2SO4}; б) P4 {(HPO3)4}; в) графит; г) Se; д) I2 {HIO3}; е) Ag; ж) Cu; и) Pb; к) KF; л) FeO; м) FeS; н) MgO; п) MgS; р) Fe(OH)2; с) P2O3; т) As2O3 {H3AsO4}; у) As2S3; ф) Fe(NO3)2; х) P4O10; ц) Cu2S.
  17. То же, но при пропускании следующих газов: а) CO; б) H2S; в) N2O; г) NH3; д) NO; е) H2Se; ж) HI.
  18. Одинаково, или по-разному будут протекать реакции в следующих случаях: а) в высокую пробирку на две трети заполненную концентрированной азотной кислотой, поместили кусочек магния; б) на поверхность магниевой пластины поместили каплю концентрированной азотной кислоты? Составьте уравнения реакций.
  19. В чем отличие реакции концентрированной азотной кислоты с сероводородной кислотой и с газообразным сероводородом? Составьте уравнения реакций.
  20. Одинаково ли будут протекать ОВР при добавлении к концентрированному раствору азотной кислоты безводного кристаллического сульфида натрия и его 0,1 M раствора?
  21. Концентрированной азотной кислотой обработали смесь следующих веществ: Cu, Fe, Zn, Si и Cr. Составьте уравнения протекающих реакций.
  22. Составьте уравнения реакций, протекающих при добавлении в разбавленную азотную кислоту следующих веществ: а) I2; б) Mg; в) Al; г) Fe; д) FeO; е) FeS; ж) Fe(OH)2; и) Fe(OH)3; к) MnS; л) Cu2S; м) CuS; н) CuO; п) Na2Sкр; р) Na2Sр; с) P4O10.
  23. Какие процессы будут протекать при пропускании через разбавленный раствор азотной кислоты а) аммиака, б) сероводорода, в) диоксида углерода?
  24. Составьте уравнения реакций, протекающих при добавлении в концентрированную серную кислоту следующих веществ: а) Ag; б) Cu; в) графит; г) HCOOH; д) С6H12O6; е) NaClкр; ж) C2H5OH.
  25. При пропускании через холодную концентрированную серную кислоту сероводорода образуется S и SO2, горячая концентрированная H2SO4 окисляет серу до SO2. Составьте уравнения реакций. Как будет протекать реакция между горячей концентрированной H2SO4 и сероводородом?
  26. Почему хлороводород получают, обрабатывая кристаллический хлорид натрия концентрированной серной кислотой, а бромоводород и йодоводород этим способом не получают?
  27. Составьте уравнения реакций, протекающих при взаимодействии разбавленной серной кислоты с а) Zn, б) Al, в) Fe, г) хромом в отсутствии кислорода, д) хромом на воздухе.
  28. Составьте уравнения реакций, характеризующих окислительно-восстановительные свойства пероксида водорода:
    а) H2O2 + H2SO4 + H2S ;
    б) H2O2 + H2SO4 + KI ;
    в) H2O2 + H2SO4 + K2Cr2O7 ;

    г) H2O2 + KOH + PbO2 ;
    д) H2O2 + H2SO4 + KMnO4 ;
    е) H2O2 + H2SO4 + KNO2 ;

    ж) H2O2 + H2SO4 + Cl2 ;

     

    и) H2O2 + H2SO4 + FeSO4 ;
    к) H2O2 + H2SO4 + Br2 ;

    л) H2O2 + KI ;
    м) H2O2 + Cl2 ;
    н) H2O2 + H2SO4 + Na2SO3 ;

    п) H2O2 + Na2SO3 ;
    р) H2O2 + Ag2O ;

     

    с) H2O2 + PbS ;

    т) H2O2 + KOH + KClO ;
    у) H2O2 + Ca(ClO)2 ;
    ф) H2O2 + KOH + K2SO3 ;

    х) H2O2 + KOH + KI ;
    ц) H2O2 + KOH + K3[Cr(OH)6] ; ч) H2O2 + KOH + KMnO4 .

  29.   В каких из этих реакций пероксид водорода является окислителем, а в каких – восстановителем?

  30. Какие реакции протекают при нагревании следующих веществ: а) (NH4)2CrO4; б) NaNO3; в) CaCO3; г) Al(NO3)3; д) Pb(NO3)3; е) AgNO3; ж) Hg(NO3)2; и) Cu(NO3)2; к) CuO; л) NaClO4; м) Ca(ClO4)2; н) Fe(NO3)2; п) PCl5; р) MnCl4; с) H2C2O4; т) LiNO3; у) HgO; ф) Ca(NO3)2; х) Fe(OH)3; ц) CuCl2; ч) KClO3; ш) KClO2; щ) CrO3?
  31. При сливании горячих растворов хлорида аммония и нитрата калия протекает реакция, сопровождающаяся выделением газа. Составьте уравнение этой реакции.
  32. Составьте уравнения реакций, протекающих при пропускании через холодный раствор гидроксида натрия а) хлора, б) паров брома. То же, но через горячий раствор.
  33. При взаимодействии с горячим концентрированным раствором гидроксида калия селен подвергается дисмутации до ближайших устойчивых степеней окисления (–II и +IV). Составьте уравнение этой ОВР.
  34. При тех же условиях сера подвергается аналогичной дисмутации, но при этом избыток серы реагирует с сульфит-ионами с образованием тиосульфат ионов S2O32. Составьте уравнения протекающих реакций.
  35. Цинк, алюминий и " аморфный" кремний реагируют с концентрированным раствором гидроксида натрия с выделением водорода. Составьте уравнения этих реакций, используя метод электронно-ионного баланса.
  36. Составьте уравнения следующих реакций:
    а) NaH + H2O ;
    б) Ca(ClO)2 + HCl ;
    в) H2S + SO2 ;
    г) Se + Cl2 + H2O ;
    д) H2S + HClO ;
    е) NaClO + KI + H2SO4 ;

    ж) Ca(ClO)2 + NaBr ;
    и) MnO2 + H2C2O4 + H2SO4 ;
    к) MgI2 + H2O2 + H2SO4 ;

    л) Cu2O + HNO3(к) ;
    м) Fe(OH)2 + H2O + O2 ;
    н) Mn(NO3)2 + PbO2 + HNO3;

    п) NaIO3 + H2SO4 + SO2 ;
    р) PH3 + KMnO4 + H2SO4 ;
    с) FeSO4 + O2 + H2SO4 ;

    т) NaNO2 + O3 ;
    у) Na3[Cr(OH)6] + PbO2 + NaOH ;
    ф) AgNO3 + AsH3 + H2O ;

    х) KIO3 + KI + H2SO4 ;
    ц) CrSO4 + H2SO4 + K2Cr2O7 ;
    ч) Cu + FeCl3 ;

    ш) Zn + FeCl3 ;
    щ) Mn2O7 + C ;
    d) Mn2O7 + S ;

    f) Mn2O7 + H2S ;
    g) Mn2O7 + CH3COOH ;
    h) KNO2 + H2SO4 + KI ;

    i) KNO2 + H2SO4 + H2S ;
    j) KNO2 + [N2H5]Cl + HCl
    k) FeS2 + HNO3(к) ;

    l) FeS2 + HNO3(р) ;
    m) NaBiO3 + Mn(NO3)2 + HNO3 ;
    q) Cu(OH)2 + N2H4 + NaOH

    r) Br2 + Na2CO3(p) (t);
    s) Mg + NO (t);
    t) Li + N2O (t).

  37. Составьте уравнения реакций электролиза расплавов следующих соединений: а) KCl; б) CaBr2; в) AlF3; г) NaOH; д) Ba(OH)2.
  38. Электролизу подвергались следующие вещества: а) NiSO4; б) NiCl2; в) AgNO3; г) NaOH; д) Pb(NO3)2. Реакции проводились в растворе с использованием инертного анода. Составьте уравнения этих реакций, используя метод электронно-ионного баланса.
  39. Составьте уравнения реакций электролиза а) раствора нитрата меди с серебряным анодом, б) раствора нитрата свинца с медным анодом.
Опыт 1. Окислительные свойства перманганата калия в кислотной среде. K 3-4 каплям раствора перманганата калия прилить равный объем разбавленного раствора серной кислоты, а затем раствор сульфита натрия до обесцвечивания. Составить уравнение реакции.

Опыт 2. Окислительные свойства перманганата калия в нейтральной среде. К 3-4 каплям раствора перманганата калия прилить 5-6 капель раствора сульфита натрия. Какое вещество выделилось в виде осадка?

Опыт 3. Окислительные свойства перманганата калия в щелочной среде. К 3-4 каплям раствора перманганата калия прилить 10 капель концентрированного раствора гидроксида натрия и 2 капли раствора сульфита натрия. Раствор должен приобрести зеленую окраску.

Опыт 4. Окислительные свойства дихромата калия в кислотной среде. 6 капель раствора дихромата калия подкислить четырьмя каплями разбавленного раствора серной кислоты и добавить раствор сульфита натрия до изменения окраски смеси.

Опыт 5. Окислительные свойства разбавленной серной кислоты. В одну пробирку поместить гранулу цинка, а в другую – кусочек медной ленты. В обе пробирки добавить 8-10 капель разбавленного раствора серной кислоты. Сравнить происходящие явления. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 6. Окислительные свойства концентрированной серной кислоты. Аналогично опыту 5, но добавить концентрированный раствор серной кислоты. Через минуту после начала выделения газообразных продуктов реакции ввести в пробирки полоски фильтровальной бумаги, смоченные растворами перманганата калия и сульфата меди. Объяснить происходящие явления. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 7. Окислительные свойства разбавленной азотной кислоты. Аналогично опыту 5, но добавить разбавленный раствор азотной кислоты. Наблюдать изменение цвета газообразных продуктов реакции. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 8. Окислительные свойства концентрированной азотной кислоты. В пробирку поместить кусочек медной ленты и прилить 10 капель концентрированного раствора азотной кислоты. Осторожно нагреть до полного растворения металла. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 9. Окислительные свойства нитрита калия. К 5-6 каплям раствора нитрита калия прилить равный объем разбавленного раствора серной кислоты и 5 капель раствора иодида калия. Образование каких веществ наблюдается?

Опыт 10. Восстановительные свойства нитрита калия. К 5-6 каплям раствора перманганата калия добавить равный объем разбавленного раствора серной кислоты и раствор нитрита калия до полного обесцвечивания смеси.

Опыт 11. Термическое разложение нитрата меди. Один микрошпатель тригидрата нитрата меди поместить в пробирку, закрепить ее в штативе и осторожно нагреть открытым пламенем. Наблюдать обезвоживание и последующее разложение соли. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ!

Опыт 12. Термическое разложение нитрата свинца. Провести аналогично опыту 11, поместив в пробирку нитрат свинца. ОПЫТ ПРОВОДИТЬ В ВЫТЯЖНОМ ШКАФУ! В чем отличие процессов, протекающих при разложении этих солей?


Для того, чтобы мы могли качественно предоставить Вам информацию, мы используем cookies, которые сохраняются на Вашем компьютере (сведения о местоположении; ip-адрес; тип, язык, версия ОС и браузера; тип устройства и разрешение его экрана; источник, откуда пришел на сайт пользователь; какие страницы открывает и на какие кнопки нажимает пользователь; эта же информация используется для обработки статистических данных использования сайта посредством интернет-сервисов Google Analytics и Яндекс.Метрика). Нажимая кнопку «СОГЛАСЕН», Вы подтверждаете то, что Вы проинформированы об использовании cookies на нашем сайте. Отключить cookies Вы можете в настройках своего браузера.

Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору