[предыдущий раздел] [содержание] [следующий раздел]

Д И А З О С О Е Д И Н Е Н И Я

Ароматические и алифатические диазосоединения сильно различаются по строению, стабильности и реакционной способности. Наиболее важным классом диазосоединений являются ароматические диазосоединения.

III. АРОМАТИЧЕСКИЕ ДИАЗОСОЕДИНЕНИЯ

Ароматическими диазосоединениями называются вещества, в которых один из атомов азота азогруппы -N=N- связан с ароматическим радикалом, а другой с гетероатомом. В качестве примера можно привести фенилдиазоаминобензол C6H5-N=N-NH-C6H5, фенилоксидиазобензол С6H5-N=N-OC6H5. Наиболее важным представителем ароматических диазосоединений являются арендиазониевые соли Image7.gif (289 bytes) . Соли арендиазония, где Х - анион сильной кислоты Cl - ,Br - ,HSO4- или комплексный анион : BF4 - ,SnCl6 2- , PF6 -, SbF6 - , HgCl3 - и т.д. представляют собой типичные ионные кристаллические вещества, растворимость которых в воде и спиртах определяется главным образом природой аниона Х- В воде обычно хорошо растворимы галогениды и сульфаты арилдиазония, соли же с комплексным анионом характеризуются низкой растворимостью.

[предыдущий раздел] [содержание] [следующий раздел]

III.1. Строение солей арендиазония.

Согласно данным рентгеноструктурного анализа в катионе арендиазония два атома азота расположены линейно в плоскости ароматического кольца. Спектральные и рентгеноструктурные исследования свидетельствуют о наличии тройной связи азот-азот в солях диазония Image5.gif (235 bytes). В катионе арендиазония оба атома азота несут положительный заряд. Положительный заряд на концевом атоме азота всего в 2 раза ниже, чему центрального атома азота, формально несущего положительный заряд.
Диазогруппа Image6.gif (177 bytes)    относится к сильнейшим электроноакцепторным заместителям и значительно превосходит нитрогруппу по своим акцепторным свойствам. Сопряжением пи-электронов ароматического кольца с диазогруппой обусловлена более высокая стабильность катионов  Image5.gif (235 bytes) по сравнению с катионами Image8.gif (246 bytes), которые даже при -100о мгновенно разлагаются с выделением азота и образованием чрезвычайно активного карбокатиона Alk+. Относительная стабильность ароматических солей диазония в большой степени зависит от природы противоиона и заместителей в бензольном кольце. Соли с комплексным анионом BF4- ,SbF6- , HgCl3 - намного стабильнее растворимых в воде галогенидов и сульфатов диазония и могут иногда сохраняться в твердом виде на воздухе при 20о в течение нескольких недель. Сухие галогениды диазония, напротив, очень неустойчивы и взрывчаты, поэтому их никогда не выделяют из раствора в индивидуальном виде.

[предыдущий раздел] [содержание] [следующий раздел]

III.2. Диазотирование первичных ароматических аминов.

Соли арендиазония образуются при взаимодействии первичных ароматических аминов с азотистой кислотой. Эта реакция была открыта в 1858 году П.Гриссом и приобрела огромное значение в синтезе ароматических соединений самых разнообразных классов. В промышленности соли арендиазония нашли широкое применение для получения разнообразных азокрасителей всех цветов и оттенков. По этой причине диазотирование относится к числу важнейших и наиболее изученных реакций в органической химии.

Диазотирование первичных ароматических аминов описывается следующим суммарным уравнением :

ArNH2 + NaNO2 + 2 HCl ArN+=N Cl -   + NaCl + 2 H2O

Согласно приведенному уравнению для диазотирования требуется два эквивалента соляной кислоты. Фактически же соляную, серную или другую сильную минеральную кислоту берут в количестве более трех эквивалентов для того чтобы по окончании диазотирования рН не превышало 0,5-1,5.

Высокая кислотность среды необходима для того, чтобы подавить две побочные реакции с участием образующегося катиона арендиазония и исходного ароматического амина. В одной из них из диазокатиона и амина получается диазоаминосоединение, часто называемое триазеном, а в другой аминоазосоединение.

В растворе с низким значением рН резко снижается концентрация свободного амина и тем самым подавляются оба этих нежелательных процесса. Диазотирование - экзотермическая реакция, сопровождающаяся выделением большого количества тепла, а соли арендиазония термически малоустойчивы. Поэтому диазотирование, как правило, проводят при охлаждении, поддерживая температуру в интервале 0-5о .

[предыдущий раздел] [содержание] [следующий раздел]

III.3. Механизм диазотирования.

Исследование механизма диазотирования было начато в конце прошлого века Е.Бамбергером и А. Ганчем и завершилось исчерпывающими исследованиями К.Ингольда (Англия), Г. Цоллингера (Швейцария) и Б.А.Порай-Кошица (СССР).

Рассмотрим в первую очередь вопрос о природе электрофильного агента диазотирования. В водном растворе сильной неорганической кислоты азотистая кислота частично протонируется с образованием нитрозацидий-катиона :

Нитрозацидий-катион очень активный электрофильный агент. Согласно кинетическим данным, этот катион в водном растворе гораздо быстрее реагирует с неорганическими анионами, присутствующими в растворе, чем с ароматическим амином.

В результате образуются новые реагенты : азотистый ангидрид, хлористый или бромистый нитрозил, которые могут быть электрофильными агентами при диазотировании в разбавленном водном растворе.

В разбавленном водном растворе серной, фосфорной, хлорной и других кислот нитрозирующим агентом является азотистый ангидрид N2O3 . При диазотировании в растворе соляной или бромистоводородной кислоты электрофильным агентом оказывается хлористый и, соответственно, бромистый нитрозил. Сама азотистая кислота представляет собой слишком слабый электрофильный агент для диазотирования ароматических аминов. В сильно кислотной среде активной частицей является, вероятно, катион H2NO2+. Наиболее активный нитрозирующий агент - нитрозилсерная кислота получается только в концентрированной серной кислоте при взаимодействии с нитритом натрия.

2 H2SO4 + NaNO2 --- O=N- OSO3H + NaHSO4 + H2O

Активность электрофильных агентов при диазотировании уменьшается в ряду :

Эти выводы хорошо согласуются с экспериментальными данными. Диазотирование в водном растворе соляной кислоты идет быстрее, чем в водном растворе серной кислоты, поскольку нитрозилхлорид более сильный электрофильный агент по сравнению с азотистым ангидридом. В свою очередь дизотирование в растворе бромистоводородной кислоты или при добавках бромид-иона идет с большей скоростью, чем в соляной кислоте.

Диазотирование всегда проводят в кислой среде, где протолитическое равновесие сильно смещено вправо.

Тем не менее диазотированию подвергается амин в виде свобoдного основания. Лимитирующей стадией всего процесса диазотирования является образование N-арилнитрозоаммония, как это предполагал Е. Бамбергер еще в 1900 году, далее следует ряд быстрых протолитических равновесий, приводящих к диазосоединению, как к конечному продукту.

На стадии (4) происходит отщепление протона от азота или кислорода, поскольку исходный катион формально является аналогом аллильного катиона. Депротонирование кислорода приводит к исходному субстрату - нитрозамину, тогда как депротонирование азота ведет к образованию конечного продукта - соли арендиазония. Соли диазония, как уже было отмечено, редко выделяют из раствора в индивидуальном виде и в большинстве случаев сразу же вводят в дальнейшие превращения. Тем не менее многие соли арендиазония с некоторыми противоионами ( PF6-, SbF6-, BF4-) нерастворим в воде и достаточно стабильны при хранении их в сухом виде в течение длительного времени. Такие соли называют стабильными формами диазосоединений или диазосолями. К ним относятся соли Image7.gif (289 bytes) X- = PF6-, BF4-, ZnCl42- , SnCl62- и др. С сульфит- и цианид-ионами катионы жиазония образуют относительно стабильные ковалентные соединения сульфонаты Ar- N=N-SO3-Na+ и цианиды Ar-N=N-CN.

[предыдущий раздел] [содержание] [следующий раздел]